MASDAR CITY ABU DHABI

\square Living Residential

\square
Living Community facilities
\square Business Offices
Business Light Industrial
\square Business Research and development
\square Public Park and open space
\square Public Hotel
\square Public Leisure
Public Education Institutional
\square Utilities solar hub
Utilities other

SFADE@SEA

MASDAR CITY ABU DHABI

	m2 Footprint	\% of total built area
Living Residential	1.565 .620	25
Living Community facilities	78.195	1
Business Offices	225.161	4
Business Light Industrial	340.128	6
Business Research and development	258.717	4
Public Park and open space	1.913 .031	31
Public Hotel	41.185	1
Public Leisure	731.136	12
Public Education Institutional	444.079	7
Utilities solar hub	360.622	6
Utilities other	181.383	3

SRACE@SEA

MASDAR CITY ABU DHABI

Function Living

Living Residential
Living Community facilities

m2 Footprint	\% of total built area	\% of total area
1.565.620	25	20
78.195	1	1

- Estimated 75\% of the plot area is dedicated to the footprint of the function Living
- 75% is equal to 7.351 m 2 of total grid footprint of 9801 m 2 (platform)
- In Masdar City the estimation of the total footprint for living and community facilities is $1,247.861 \mathrm{~m} 2$ of the total area

179

MASDAR CITY ABU DHABI

Function Business
\square Business Offices
Business Light Industrial
Business Research and development
m2 Footprint \% of total built area \% of total area
2.55.161 4 3
$340.128 \quad 6$
4
258.717

- Estimated 21% of the plot area is dedicated to the footprint of the function Business
- 21% is equal to 2.058 m 2 of total grid footprint of 9801 m 2 (platform)
- In Masdar City the estimation of the total footprint for Business is 173.041 m 2 of the total area

MASDAR CITY ABU DHABI

Function Public

Public Park and open space
Public Hotel
Public Leisure

- Estimated 25\% of the plot area is dedicated to the footprint is Public area
- 25% is equal to 2.450 m 2 of total grid footprint of 9801 m 2 (platform)
- In Masdar City the estimation of the total footprint for public is 2.001 .768 m 2 of the total area
m2 Footprint \% of total built area \% of total area
1.913.031 3124
$41.185100,5$
731.13612

MASDAR CITY ABU DHABI

Function Educational

Public Education Institutional

m2 Footprint	\% of total built area	\% of total area
444.079	7	6

- Estimated 29% of the plot area is dedicated to the footprint is Institutional
- 29% is equal to 2.842 m 2 of total grid footprint of 9801 m 2 (platform)
- In Masdar City the estimation of the total footprint for public is 2.322 .050 m 2 of the total area

182

MASDAR CITY ABU DHABI

Function Utilities

Utilities solar hub
Utilities other

m2 Footprint	\% of total built area	\% of total area
360.622	6	4,5
181.383	3	2

- Estimated 18% of the plot area is dedicated to the footprint is Institutional
- 18% is equal to 1.764 m 2 of total grid footprint of 9801 m 2 (platform)
- In Masdar City the estimation of the total footprint for public is 1.441 .273 m 2 of the total area

MASDAR CITY ABU DHABI

Function Connectivity
Personal Rapid Transit
2.8km track

MASDAR CITY ABU DHABI

Function Connectivity Group Rapid Transit
4.0km track

MASDAR CITY ABU DHABI

Function Connectivity Public Bus Route
4.1km track

186

MASDAR CITY ABU DHABI

Function Connectivity Metro Line
3.1 km track

MASDAR CITY ABU DHABI

Function Connectivity Light Rail Transit
4.2km track

MASDAR CITY ABU DHABI

Function Connectivity Entrances

8 main entrances

SPACE@SEA

RIJSWIJK

Rijswijk is a city in the coastal area of the Netherlands located next to the city of The Hague.

RIJSWIJK

Subcity
Location and Facts

SPACE@SEA

RIJSWIJK

Subcity

Location and Facts

SPACE@SEA

RIJSWIJK

- 51.742 inhabitants

SRACE@SEA

RIJSWIJK

\square Living Community Facilities
\square Living < 3 layers
Living > 3 layers

Business Commercial
Business Offices
\square Business Light Industrial
Business Agriculture
\square Business Catering Industry
\square Public Park and open space
Public Building
Public Education Institutional
Public Daily Care
\square Utilities
\square Water

SDACE@sEA

RIJSWIJK

Living Community Facilities
Living < 3 layers

Business Commercial
Business Offices
Business Light Industrial
Business Agriculture
Business Catering Industry
Public Park and open space
\square Public Building
Public Education Institutional
Public Daily Care
Utilities
\square Water
m2 Footprint \% of total built area
40.000
2.050.000 20
370.000
$620.000 \quad 6$
$30.000 \quad 1$
$360.000 \quad 4$
$90.000 \quad 1$
$30.000 \quad 1$
4.430.000 44
$70.000 \quad 1$
$90.000 \quad 1$
$30.000 \quad 1$
1.130.000 11
560.000

5

RIJSWIJK

Function Living

\square Living Community facilities
Living < 3 layers
Living > 3 layers

m2 Footprint	\% of total built area	\% of total area
40.000	1	1
2.050 .000	20	18
370.000	3	1

- Estimated 23% of the plot area is dedicated to the footprint of the function Living
- 23% is equal to 2.219 m 2 of total grid footprint of 9801 । (platform)
- In Rijswijk the estimation of the total footprint than wil be 565.800 m 2

SRACE@SEA

RIJSWIJK

Function Business

RIJSWIJK

Function Business

RIJSWIJK

Function Public
Public Park and Open Space
4.430.000 4435
Public Building 70.000
11Public EducationPublic Daily Care

$$
30.000
$$

$$
1
$$

- Estimated 17% of the plot area is dedicated to the footprint of a public building (excluding the parks and sport facilities area which consist mainly of land)
- 17% is equal to 1678 m 2 of total grid footprint of 9801 m 2 (platform)
- In Rijswijk the estimation of the total footprint than will be 32.300 m 2 (excluding parks and sport facilities)

m2 Footprint \% of total built area \% of total area

RIJSWIJK

Function Water

Public Park and Open Space

$m 2$ Footprint	\% of total built area	\% of total area
560.000	6	4

RIJSWIJK

Function Connectivity
Main Road Transit
14.7 km track

SPADE@SEA

RIJSWIJK

Function Connectivity
Public Bus Transit
8.1 km track

SPADE@SEA

RIJSWIJK

Function Connectivity
Railway
4.5km track

SPACE@SEA

RIJSWIJK

Function Connectivity
Entrances

13 Main entrances

SPACE@SEA

TOLLEBEEK

Tollebeek is founded in 1957 after the land was drained in 1942. The village is located at the east embankment of the ljselmeer in the province of Flevoland.

TOLLEBEEK

Small Village

Location and Facts

SPACE@SEA

TOLLEBEEK

Small Village

Location and Facts

TOLLEBEEK

- 2.450 inhabitants

TOLLEBEEK

\square
Living < 3 layers
Business Commercial
Business Light Industrial
Business Agriculture
Business Catering Industry
Public Park and open space
\square Public Building
Public Educational Institutional
Water

SPACE@SEA

TOLLEBEEK

	m2 Footprint	\% of total built area
Living < 3 layers	362.637	1
Business Commercial	16.602	20
Business Light Industrial	29.403	3
Business Agriculture	686.070	6
Business Catering Industry	9.801	1
Public Park and open space	460.640	4
Public Building	19.602	1
Public Educational Institutional	9.801	1
Water	29.403	2

TOLLEBEEK

Function Living

Living < 3 layers

m2 Footprint	\% of total built area	$\%$ of total area
362.637	22	21

- Estimated 26% of the plot area is dedicated to the footprint of the residential housing
- 26% is equal to 2.468 m 2 of total grid footprint of 9801 m 2 (platform)
- In Tollebeek the estimation of the total footprint than will be 164.458 m 2

SRACE@SEA

TOLLEBEEK

Function Business

TOLLEBEEK

Function Public

\square Public Park and Open Space
Public Building
Public Sports
Public Education Institutional
m 2 Footprint \% of total built area \% of total area
460.64728
$19.602 \quad 1$
1
49.0053

3
9.801

- Estimated 8\% of the plot area is dedicated to the footprint of a commercial building (excluding the parks and sport facilities area which consist mainly of land)
- 8% is equal to 786 m 2 of total grid footprint of 9801 m 2 (platform)
- In Tollebeek the estimation of the total footprint than will be 4.716 m 2 (excluding parks and sport facilities)

SRACE@SEA

TOLLEBEEK

Function Water

Water

TOLLEBEEK

Function Connectivity Main Roads Transit
2.0km track

TOLLEBEEK

Function Connectivity Public Bus Transit
1.2 km track

TOLLEBEEK

Function Connectivity Entrances

5 Main Entrances

spACE@sEA

WRAP UP

\% of Built area	Masdar city	Rijswijk	Tollebeek
Living Residential <3 layers	0\%	20\%	22\%
Living>3 layers	25\%	3\%	0\%
Living community facilities	1\%	1\%	0\%
Business Research and Development	4\%	0\%	0\%
Business Offices	4\%	1\%	0\%
Business Light Industrial	6\%	4\%	3%
Business Catering industry	0\%	1\%	1%
Business Agriculture	0\%	1\%	41\%
Business Commercial	0\%	6\%	1\%
Public Hotel	1\%	0\%	0\%
Public Park and Open space	31\%	44\%	28\%
Public Leisure	12\%	0%	0\%
Public Building	0\%	1\%	1\%
Public Education/Institutional	7\%	1\%	1\%
Public Education daily care	0%	1\%	0\%
Utilities Solar hub	6\%	0\%	0\%
Utilities Other	3\%	11\%	0\%
Health Hospital	0\%	0\%	0\%
Heath Nursery	0\%	0\%	0\%
Water	0	5\%	2\%
	100\%	100\%	100\%

HORIFNM2 2020

SRACE@SEA

Appendix-4

Parametric Design and Configuration Study

Table of Contents

1. HOW
2. WHY
3. Script trials
4. Comparision of platform geometries
5. Platform Design

Concept -100m
Concept -50m
6. Studies
7. Parametric modeling
8. Optimum platform numbers
9. Input for simulation
10. Configuration concepts

HOW -

- Searching of different urban scenarios: A, B, C, D, E, Etc. each with specific characteristics.
- Program selection, of this different urban scenarios.
- Carrying different studies with grasshopper scripts, to obtain outputs and observations based on the rules and parameters.
- Output performance : how well functioned city at comfort, technique, ecology, feasibility.
- Output tuning.

WHY -

Grasshopper

- Grasshopper - computational tool helps to arrive at a design output based on rules and parameters.
- Once we define rules and parameters - the script can be used for any conditions. We will obtain the respective outputs based on our inputs for the rules and parameters.
- We can keep adding new rules - it becomes a cumulative script.
- We can study more outputs in a time frame and produce better results.

Script trials

Introduction

With the studies in our previous presentation. We started generating the city pattern and fabric.

We are defining the space @ sea through scripts in grasshopper.
These scripts will be the source code for the cities in varies condition and senarios. The design methods are approached with systematic algorithmic scripts.

These algorithms will be the data sources for the future - floating cities. This data collection helps us in gathering and measuring information on targeted variables in an established systematic fashion, which then enables one to answer relevant questions and evaluate outcomes.

The algorithms will helps us find a better solution and configuration, based on the flexibility tools. The city could be tuned and will make it adaptable.

Trial -1

Starting with triangular floating platform. In this we are understanding how platform can be eleminated on the need for creating blue spaces for the neighbourhood.

We define the points or we define a path along which blue spaces needs to be created.
Different parameters -
1 - Number of points or points along a path.
2 - The distance range between them.
3 - Numbers of units to be eliminated.

Trial -1

The defined points in the neighbourhood.

Trial -1

Definition for points along a curve.

This helps in creating more opportunities for functions like dock yards, local recreational spaces, or a transportational terminal.

Trial -2

The idea of a built form should respond to the platform profile. So we attempeted to create triangular prymide. Inorder to define it for different functions, we attempted to vary each built forms height.

In this the height of the built form responds to a functional graph. Through this, we also attempted an iteration - if all built form have same height and the functional graph trims the existing form. We got much open space on a higher level, which gives a different perspective of the surrounding.

Parameters -
1 - Extrusion value (height).
2 - Graph defining the height based on the functional need.

SRACE@SEA

Trial -2

This helps in defining the heights of the form based on the functinal distribution.

In the second iteration it helps us to think about a public space at a higher level and relation / proportion between the flat surface on top with the functional graph.

SPACE@SEA

Trial -3

From the previous attempt,In this we study how relatively the public spaces on higher level can be defined with different massing of each block. Based on the defined form.

Parameters -

1 - Functional spots / points.
2 - Scale factor for the higher level spaces.
3 - Extrusion value.
4 - Slope.

Trial -3

The extrusion factor is fixed.

But when the scale factor or the slope factor is varied. This influence the form of the building.

The plan shows the open space on top, in relation to the height.

Trial -3

This helps in finding the relation between the flat area on top with the
 slope of the built form. Also it helps in determining the height factor of the form.

Trial -4

In this we are trying to distribute specific built form, for specific function zones.
Here a grid pattern is used to have grip on the idea of distributing building forms.

Trial -4

The built forms are predefined. Based on the functional points or the nodes, the area is divided based on the influencial region and accordingally the built forms are packed.

Parameters -

1 - Functional spots / points.
2 - Height for the built form.
3 - Area of influence.
This will help us in organising each building typology based on the functional need.

Conclusion

In the previous session, we tried to get an understanding on relation between the functional nodes and the built form and the platform.

In an urban planning, the built form is mostly dependent on the function, it's catering. Each function demand its own form but there is a connection or slow transision between two.

The idea of having open public spaces on the higher level will bring in a different spacial quality for the city, with multilevel of different functions performing together. It creates a mixed use pattern - adaptable form.

Trial -5 City growth parameters

In this chapter, we take an attempt to script the city growth pattern.
It becomes a necessery tool to study the growth pattern of the floating city. There is no defined boundary conditions or topographical constraints.

A set of rules has to be defined for the floating platform to develop, which is functionaly driven.

This will help in understanding on orign of a city and dynamics of it's configurations.

Trial -5 City growth parameters

Mirror on all open edge

Mirror only when two sides are open

Mirror on all open
edges - When 2 edges are open

Mirror on all open edges

Moving along a point

Trial -5 City growth parameters

The growth pattern along the different points of the given base form, gives more flexibility of growth compared to other growth pattern.

This helps us to have more control over the program, functions of the city and the city blocks.
In all other growth pattern- the platform are developed on the periphery.
Being a floating city, it gives us an opportunity to develop from the inner core. The algorithm to move along the points will help in bringing this growth form. Where the shortest open ends will be reconfigured to accommodate new platforms in the central spaces. Which doesn't change original functional configuration and also allows us to easily reorganise functionally, (for adaptability) because of more open ends.

Parameters -

1-City functions.
2 - Area per.person variable.
3 - Near growth.
4 - Deform the equilateral triangle.

Trial -5 City growth parameters

Initial city functions are defined and the best configuration is opted, out of the lot.

The area for each function is also defined.

Trial -5 City growth parameters

Initial city structure - with given area and the functions
It forms equilateral triangle with 50 m as one of its edge.

Initial form

Step -1 increase in per person area

Step - 2 increase in per person area

Trial -5 City growth parameters

We start deforming the equilateral platform on the basis of increasing the area or decreasing the areas of platform closer to the functional nodes.

Trial -5 City growth parameters

Study on the street movements based on the formed network.

The study is only for the peripheral movement.

Trial -5 City growth parameters

From the formed cluster, we tried different movement pattern and building blocks.

With the triangular pyramid form and a mid layer for network and top layer of open spaces.

An idea of perimeter blocks with central open spaces.

References

SPACE@SEA

Conclusions

The city developes in an organic pattern.
The algorithm defined along the points provides the flexiblity to look for better configurations for both functional nodes and platforms.

Periphral movement and different levels of open space and movement pattern improves the city functions.

Trial -6 Waterfront grid

In this study we are attempting the possiblities of giving additional flexible spaces to the existing city.
This plugin can generate through the existing water channels, or to the city fabric.
This module extends the existing network of movement and adds water ways also. The city blocks gets connected with water canals.

Its opens out more public interactive spaces.
Each block has both faces- one towards the city network and the other to the water - creating different spacial experiences.

Trial -6 Waterfront grid

Initial attempt to work out the combination of spaces. Visual creation.

Trial -6 Waterfront grid

Scripting the visual creation
With the initial visual, we started scripting in grasshopper.
We will be generating a source code which can be tuned to different situations and conditions.
This source code will be the DNA for more waterfront grids system to come up in the future.

Trial -6 Waterfront grid

Attempt-1

We started defining it with number of block

- we want to create and the connectivity within them.

We generated the city block within a defined region and parallel street networks and internal water network.

Parameters -
1 - Number of blocks.
2 - Areas of each block.
3 - Street width.
4 - Building block width.
5 -space in-between blocks.
6 - blocks height.

Trial -6 Waterfront grid

Attempt - 2

In this we gave more characters to the sorce code.
Worked out a generative growth factor for the city fabric. Which will enable the city to grow in the near future.
We created more characters to the streets. By opening canals and interconnecting the city network and the water.

Trial -6 Waterfront grid

Attempt - 2

With the defined configurations. The script will develop the network of streets, set the limits to get the better peripheral combination.

The extended streets will act as a dock space, later if the city grows this will transform to a block by itself.

SRACE@SEA

Trial -6 Waterfront grid

Attempt - 2

The extended streets will act as a dock space, later if the city grows this will transform to a block by itself.

Trial -6 Waterfront grid

Attempt - 2

SPACE@SEA

Trial -6 Waterfront grid

Attempt - 2

More numbers of building blocks, gives more opportunity for a mixed use function.

Trial -6 Waterfront grid

Attempt - 3

This is an understanding, of the scales between the existing and the new water front grid.

Each existing urban fabric will demand its own proportions of the blocks and urban network.

Conclusions

The previous attempts explain the different spatial experience and the connectivity between water and land. The attempt explains how we could continue carrying the language of the city into water.

The city might demand an organic growth line we have shown in the attempt - 3 .
There are cities which will demand regular gird pattern or a radial pattern or an hexagonal grid pattern. Depending on the requirements the scripts can be derived accordingly.

The bigger picture is about how the city is changed to a flexible module with the development in water.

Trial -7 Open Spaces

Green spaces / Open spaces - capacity by flexibility
Increases the connectivity - more local movement (pedestrian)
Increases green space
The platforms can be combined to create interactive spaces.
open market
public gatherings - events
pavilion
Possibilities of increasing urban farming
Water front walkways.

Trial -7 Open Spaces

Attempt -1

Once the site is defined -
With the boundary region we can define the primary street network and define the open space. Forming the network of pedestrian movements.

Parameters-
1 - Number of entry points.
2 - Length of the walkways.
3 - Interconnectivity.
4 - Size of the platforms.
5 - Number of platforms.

Trial -7 Open Spaces

Attempt -1

SRABE ABA

Trial -7 Open Spaces

Attempt -1

Initial step, the boundary and the access points area defined.

The script then generates the internal network, based on the max. and min. street length provided.

Hexagon modules are used to create the platform. Similarly any quadrant can be created.

Have control over number of modules along the path. Which increases area per person ratio.

SPADE@SEA

Trial -7 Open Spaces

Attempt -2

We cab generate island of open spaces with defined area to occupy.
Parameters -
1 - Number of islands to be formed
2 - Size of the islands
3 - Iterations of different forms.

Trial -7 Open Spaces

Attempt -2

The numbers denote number of islands to be created. The island has constant number of platforms.

Seed - gives us number of iterations based on the required configuration, within the region defined.

SPACE@SEA

Trial -7 Open Spaces

Attempt -2

Number of modules per island is increased.

Trial -7 Open Spaces

Attempt -3

With the set of platforms defined, we can collect all to a point or points or boundary to create gathering spaces.

Trial -7 Open Spaces

Attempt -3

We temporarily collect part of open space and convert to a bigger platform.

Trial -7 Open Spaces

Attempt -4

Walkways using the existing cuboids - $240 \times 80 \times 80 \mathrm{~cm}$ and $80 \times 80 \times 80 \mathrm{~cm}$ This provides more green space to the neighborhood.

It also connects two end destinations - creating a walkway on water with green and open areas.

Here we define the path and then the script generates the form.

Parameters-
1 - Number of horizontal elements.
2 - Number of vertical elements.
3 - Combine to form bigger grid area.
4 - Split the square area with percentage.

Trial -7 Open Spaces

Attempt -4

SPACE@SEA

Trial -7 Open Spaces

Attempt -4

In this part of the script, we can define how each central space can be divided based on different purposes.

It's possible to combine the central spaces on the requirement.

Trial -7 Open Spaces

Attempt -4

When a new path is defined, the script generates the walkway between the start to end.

We have the flexiblity of determining or increasing the horizontal and vertical members individually based on our needs.

Trial -8 Affordable Housing

Attempt -1

From the script made for waterfront grid - an attempt to see the organic growth of the residential spaces.

Trial -8 Affordable Housing

Attempt - 2

In this we have tried to maintain the grid pattern in the waterfront grid. The access points are defined.
With the access points - the internal network is defined and the perimeter block system is carried out.

SPADE@SEA

Trial -8 Affordable Housing

Attempt -2

This approach addresses the existing urban language.

SPADE@SEA

Conclusions

In the initial studies - we have created an understanding on how the platforms can configure with respect to the function based on the need.

The flexibility is, it can reconfigure the platforms based on the other criteria's.
The open spaces responds to this flexibility - they can be a walkway for a particular period of time and can reorganize to form huge area for public market and event spaces.

The change period of each function on a public space is maximum scaled on weekly basis.
The change period for a work space or a residential space, maximum scaled for 1-2 years.
So, the built form also, with the platform should be able to reconfigure, without disturbing the urban fabric.

Defining Parameters

- Platform.
- Height for the built form.
- Density distribution.
- Program / Functional distribution.
- Under water spaces.
- Open area and Built area.
- Geometry of the built form.
- Functional modules - typologies.
- Reconfiguration.
- City mobility - interconnectivity and mode of travel.
- Alignment of built form - wind factor.
- Open surface for energy - sunlight orientation.
- Weight.
- Growth factor of the city.
- Sustainability - key sustainable elements.

Capacity by flexibility

The flexible approach to urban planning should enable variability in the totality and particulars of urban functions because it is the only way to adapt to the changes that are difficult to predict (Knežević, 1980)

Contemporary practice of design and planning should target the flexibility and transformability.
All the existing city constantly work on adaptable spaces and minor components of flexible space with the built form.

We are looking into the possibilities on how we increase the capacity of flexibility.
The system will permit the generation of alternative solutions to respond to changes in the context during the legal lifespan of the plan, while maintaining the same ordering principles and aesthetic coherence.

Capacity by flexiblity

The impact of accelerating change on the physical form of the city is radical.
Architecture that responds to change.
Functional architecture that is moveable, adaptable, transformable, and capable of disengagement and reassembly - multiple activities in one space.

Flexible master planning,
Flexible building design,
Flexible building management.

Comparison of platform geometries (1/2)

Square and equilateral triangle

BUILDING TYPOLOGIES AND LAYOUT IN RELATION TO PLATFORM GEOMETRY

bullding footprint compared to platform (\%)

$$
\xlongequal[4 m]{\Delta} \triangleq \underset{n}{\Delta}
$$

combination small squares and triangles
combination large squares and triangles

Dotted line: platforms rigidly connected

Comparison of platform geometries (2/2)

Isosceles triangle, radial expansion

Dotted line: platforms rigidly connected

Comparison of platform geometries: evaluation

- Using triangular platforms, 20% less building footprint is achieved compared to square platforms with equal building depth and road width -> less opportunity for real estate space from the start.
- Choosing for triangular platforms leads to building with pointy and difficult corners. Such corners are not only difficult to solve in floorplan but also make construction more complicated.
- With larger triangles it is easier to create perimeter blocks and optimize the built space on the platform. However, there is a limit to the size of platforms we can build. A possible way to circumvent having a large amount of pointy buildings and to make more efficient use of the space on the platform is to connect multiple triangular platforms in a rigid way, so that they behave as one large platform

Comparison of platform geometries: evaluation

	Platform			Open space		Building(s)							Spacematrix			Land use\%				Apartm ents \#	Reside nts \#	Density ap./ha	Built volume m^{3}	Façade surface m^{2}	s/v
	Polygon sides \#	$\begin{gathered} \text { Side } \\ \mathrm{m} \end{gathered}$	Area m^{2}	$\begin{array}{cc} \text { Road } & \text { Green } \\ \mathbf{m}^{2} & \mathbf{m}^{2} \end{array}$		Block length m	Floors \#	Building depth m	Courtyard side m	Built-up area m^{2}	Gross floor area (GFA) m^{2}	Net floor area (NFA) \mathbf{m}^{2}	Floor area Ratio FAR or FSI	Gross Space Index GSI	Spaciou sness OSR	$\begin{array}{\|c} \text { Buildings } \\ \% \end{array}$	Road \%	$\begin{gathered} \text { Green } \\ \% \end{gathered}$	Total \%						
	4	50	2500	651	529	43	3	10	23	1320	3960	2772	1.58	0.53	0.30	52.8\%	26.0\%	21.2\%	100\%	44.00	88.0	176.0	13,200	2640	0.40
	4	50	2500	701	529	43	3	10	23	1270	3810	2667	1.52	0.51	0.32	50.8\%	28.0\%	21.2\%	100\%	42.3	84.7	169.3	12,700	2523	0.40
	4	50	2500	651	817	43	3	12	19	1032	3096	2167	1.24	0.41	0.47	41.3\%	26.0\%	32.7\%	100\%	34.4	68.8	137.6	10,320	2200	0.41
	3	50	1082.5	461	45	38	3	8	10	576	1729	1211	1.60	0.53	0.29	53.3\%	42.6\%	4.1\%	100\%	19.2	38.4	177.5	5,765	1441	0.45

PLATFORM DESIGN

Concept

- A parallel analysis was done on the built typologies on the triangle platform.
- Through this we get inputs for the script, the built percentages, density analysis etc.
- Also comparisons between 50 m platform and 100 m platform.

PLATFORM DESIGN

Concept 100m

Triangular courtyard

Triangular courtyard Chamfered corners

Triangular courtyard Split in two

Triangular courtyard
Open side

Triangular courtyard Split in two and open side

PLATFORM DESIGN

Concept 100m

Linear blocks
Two linear blocks

Linear blocks
Two linear blocks With connecting block

Linear blocks
Three linear blocks
With connecting block

PLATFORM DESIGN

Concept 100m
 Triangular Courtyard

PLATFORM DESIGN

Concept 100m
 Triangular Courtyard with Chamfered Corners

Platform			Open space		Building(s)							Spacematrix			Land use \%				Standards						
Polygon sides	Side	Area	Road	Green	Block length	Floors	Building depth	Courty ard side	Built-up area	Gross floor area (GFA)	Net floor area (NFA)	Floor area Ratio	Gross Space Index	Spaciou sness	Buildings	Road	Green	Total	Apartm ents	Reside nts	Density	Green	Green deficit/surp lus	Parking	Built volume
\#	m	m^{2}	m^{2}	m^{2}	m	\#	m	m	m^{2}	m^{2}	m^{2}	FAR or FSI	GSI	OSR	\%	\%	\%	\%	\#	\#	ap./ha	m^{2}	m^{2}	\#	m^{3}
3	100	4330	1160	1227	88	3	10	53	1943	5802	4061	1,34	0,45	0,41	44,9\%	26,8\%	28,3\%	100\%	64,5	128,9	148,9	1160	67	64,5	19.430

PLATFORM DESIGN

Concept 100m
 Triangular Courtyard Split in Two

PLATFORM DESIGN

Concept 100m
 Triangular Courtyard Open Side

PLATFORM DESIGN

Concept 100m
 Triangular Courtyard Split in Two and Open Side

PLATFORM DESIGN

Concept 100m
 Linear Blocks Two Linear Blocks

PLATFORM DESIGN

Concept 100m
 Linear Blocks Two with Connecting Block

PLATFORM DESIGN

Concept 100m
 Linear Blocks Three Linear Blocks with Connecting Block

Platform			Open space		Building(s)						Spacematrix				Land use \%				Apartm ents	Reside nts	Density	Standards			
Polygon sides	Side	Area	Road	Green	Block length	Floors	Building depth	Courtya rd side	Built-up area	Gross floor area (GFA)	Net floor area (NFA)	Floor area Ratio	Gross Space Index	Spaciou sness	Buildings	Road	Green	Total				Green	Green deficit/surp lus	Parking	Built volume
\#	m	m^{2}	m^{2}	m^{2}	m	\#	m	m	m^{2}	m^{2}	m^{2}	FAR or FSI	GSI	OSR	\%	\%	\%	\%	\#	\#	ap./ha	m^{2}	m^{2}	\#	m^{3}
3	100	4330	1693	814	88\&53\&19	3	10	20	1823	5469	3828	1,26	0,42	0,46	42,1\%	39,1\%	18,8\%	100\%	60,8	121,5	140,3	1094	-280	60,8	18.230

PLATFORM DESIGN

Platform
Open space
Building(s)

Building typology Variation

Triangle courtyard
$\begin{array}{ll} \\ \text { Linear blocks } & \begin{array}{l}2 \text {-linear blocks with } \\ \text { a connecting block }\end{array}\end{array}$
$\begin{array}{ll} \\ \text { Linear blocks } & \begin{array}{l}2 \text {-linear blocks with } \\ \text { a connecting block }\end{array}\end{array}$

Linear blocks $\begin{aligned} & 3 \text {-linear blocks with } \\ & \text { a connecting blocks }\end{aligned}$

Triangle courtyard open structure

Triangle courtyard splited in two

Triangle courtyard open side
m ${ }_{3}$

Triangle courtyard chamfered corners
$\begin{array}{lllll}100 & 4330 & 1160 & 1227 & 88\end{array}$

10
53

1943	5802	4061

1,34

Linear blocks 2-linear blocks

| 100 | 4330 | 1579 | 1456 | 88 |
| :--- | :--- | :--- | :--- | :--- | \& 53

10
20
$1295 \quad 38$
2720
0,90

100	4330	1600	1235	$88 \& 53$

10
20
149544853140
1,04
0,35 0,63
.63

0,42	0
0,35	

			10	
0,46	$42,1 \%$	$39,1 \%$	$18,8 \%$	$\%$
			10	
0.4	$35,2 \%$	$22,8 \%$	$42,0 \%$	$\%$

			100
$62,4 \%$	$28,8 \%$	$8,8 \%$	

10043
$1247 \quad 12$

3

\qquad
5469 1,20

	3578	3205

8100
8100

Concept 100 m - Wrap up

Building Road Green Total Apartments y en urplus Parking volume
0

| 60,8 |
| :--- | :--- |

50,9	101,7	117,5	916	902
50,9	15.260			

90,0
162
$\begin{array}{llllllll} & 0,0 & 180,0 & 207,9 & 0 & -1237 & 90,0 & 27.000\end{array}$
100

49,8	99,7	115,1	897	338	49,8	14.950

| | 112 |
| :--- | :--- | :--- |

PLATFORM DESIGN

Concept 50m

Triangular block
Chamfered corners

Linear block

Linear block
Two elements combined

PLATFORM DESIGN

Concept 50m
 Triangular block, Chamfered corners

PLATFORM DESIGN

Concept 50m
 Linear block

PLATFORM DESIGN

Concept 50m

Wrap up

PLATFORM DESIGN

Concept for 100 m and 50 m platforms

- The built form is majorly effected with road \% based on what dimension we pick for their width - depends on what type of transport system we choose.
- We maintain a peripheral transport system so not to effect the built form.
- On average the built\% on each platform is $42,65 \%$ for 100 m and 41% for 50 m .
- We have more options with 100 m platform than 50 m because of the its size is 4 times bigger and the possibilities of built forms are many.

STUDIES

By the use of grasshopper scripts, we carry out certain studies to understand and have a grip on city designs. We understand the rules and parameters, which helps in creating a script for various situations.

STUDIES

Study-1-

Study - 2 -
Study-3-

Study - 4-

Study - 5 -

One to one translation of a city from land to water. In this we compare various stands on how we can translate an existing city and the result outputs based on our stands. The functions location remains same.
Density comparison with 50 m platforms and 100 m platforms. How transportation network effect the arrangements of the platform and its effect on the density and other stands. How we arrive at a planning layout based on the rules and the connectivity between each functions. How functions are organized to each other and where its placed. Update any parameter or new rule into to path of the script - e.g. - change in the platform shape.

WHY

- We build our study from comparing a city form land to water.
- On land, a city is defined by its topography - which defines its boundary. In water the boundary is defined by the platform shape, size, analytical data's of the waters, etc.
- Most of the cities are program driven - they address a particular function and rest all functions build around it.
- We cannot depict exact city planning strategies and layout for a floating city, it has to develop its own typologies and planning strategies. Due to various factors like cost, feasibility, natural constrains like depth of waters.
- The easy availability of land helps city to easily develop on land for future. For floating cities the expansion has to be strategically planned as we are building it artificially from the bottom line

STUDIES

- We analyzed three cities: Masdar City, Rijswijk and Tollebeek.
- By adding gaps between the platforms, the existing city boundary scales up.

Platforms are without slope edge.
For 100 m equilateral triangle platform platform

For 50 mequilateral triangle

Distance between	Scaling factor
2.5 meters	1.0433
5 meters	1.0866
7.5 meters	1.1299

Distance between	Scaling factor
2.5 meters	1.0866
5 meters	1.1732
7.5 meters	1.2598

STUDIES

With the grasshopper script prepared we can consider situations with the platform having sloped edges

This table helps in quickly arrive to an idea how big the city is going to be with a set of condition, on distance between the platforms with an existing scale on land.

Scaling table -
Platform between distance 2.5 meters
Size - 50 m equilateral triangle

Depth in	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6	6.5	7	7.5	8	8.5	9	9.5	10
${ }_{0}$	1.0866	1.0866	1.0866	1.0866	1.0866	1.0866	1.0866	1.0866	1.0866	1.0866	1.0866	1.0866	1.0866	1.0866	1.0866	1.0866	1.0866	1.0866	1.0866
5	1.878497	2.274446	2.670395	3.066343	3.462292	3.85824	4.254189	4.650138	5.046086	5.442035	5.837984	6.233932	6.629881	7.025829	7.421778	7.817727	8. 213675	8.609624	9.005573
10	1.479518	1.675977	1.872436	2.068895	2.265354	2.461813	2.658272	2.854731	3.05119	3.247649	3.444108	3.640567	3.837026	4.033484	4.229943	4.426402	4.622861	4.81932	5.015779
15	1.345164	1.474446	1.603728	1.73301	1.862292	1.991574	2.120856	2.250138	2.37942	2.508702	2.637984	2.767266	2.896548	3.02583	3.155113	3.284395	3.413677	3.542959	3.672241
20	1.276951	1.372126	1.467302	1.562477	1.657652	1.752828	1.848003	1.943179	2.038354	2.13353	2.228705	2.32388	2.419056	2.514231	2.609407	2.704582	2.799757	2.894933	2.990108
25	1.235176	1.309464	1.383752	1.458039	1.532327	1.606615	1.680903	1.755191	1.829479	1.903767	1.978055	2.052343	2.126631	2.200918	2.275206	2.349494	2.423782	2.49807	1.572358
30	1.2066	1.2666	1.3266	1.3866	1.4466	1.5066	1.5666	1.6266	1.6866	1.7466	1.8066	1.8666	1.9266	1.9866	2.0466	2.1066	2.1666	2.2266	2.2866
35	1.185545	1.235017	1.28449	1.333962	1.383435	1.432907	1.48238	1.531852	1.581325	1.630797	1.68027	1.729742	1.779215	1.828687	1.87816	1.927632	1.977105	2.026577	2.07605
40	1.169167	1.210451	1.251734	1.293018	1.334301	1.375585	1.416868	1.458152	1.499436	1.540719	1.582003	1.623286	1.66457	1.705853	1.747137	1.78842	1.829704	1.870988	1.912271
45	1.155882	1.190523	1.225164	1.259805	1.294446	1.329087	1.363728	1.398369	1.43301	1.467651	1.502292	1.536933	1.571574	1.606215	1.640856	1.675497	1.710138	1.744779	1.77942
50	1.144735	1.173802	1.202869	1.231936	1.261004	1.290071	1.319138	1.348205	1.377273	1.40634	1.435407	1.464474	1.493542	1.522609	1.551676	1.580743	1.609811	1.638878	1.667945
55	1.135112	1.159368	1.183624	1.20788	1.232135	1.256391	1.280647	1.304903	1.329159	1.353415	1.377671	1.401927	1.426183	1.450439	1.474694	1.49895	1.523206	1.547462	1.571718
60	1.1266	1.1466	1.1666	1.1866	1.2066	1.2266	1.2466	1.2666	1.2866	1.3066	1.3266	1.3466	1.3666	1.3866	1.4066	1.4266	1.4466	1.4666	1.4866
65	1.118907	1.13506	1.151213	1.167367	1.18352	1.199674	1.215827	1.23198	1.248134	1.264287	1.28044	1.296594	1.312747	1.328901	1.345054	1.361207	1.377361	1.393514	1.409667
70	1.111817	1.24425	1.137033	1.149641	1.16225	1.174858	1.187466	1.200075	1.212683	1.225291	1.2379	1.250508	1.263116	1.275724	1.288333	1.300941	1.313549	1.326158	1.338766
75	1.105164	1.114446	1.123728	1.13301	1.142292	1.151574	1.160856	1.170138	1.17942	1.188702	1.197984	1.207266	1.216548	1.22583	1.235113	1.244395	1. 253677	1.262959	1.272241
80	1.098816	1.104924	1.111033	1.117141	1.123249	1.129357	1.135465	1.141573	1.147681	1.15379	1.159898	1.166006	1.172114	1.178222	1.18433	1.190438	1.196547	1.202655	1.208763
85	1.092611	1.095692	1.098723	1.101753	1.104784	1.107815	1.110846	1.113876	1.116907	1.119938	1.122968	1.125999	1.12903	1.13206	1.135091	1.138122	1. 141153	1.144183	1.147214

SRACE@SEA

STUDIES

Platform

Triangle size

Scripts help to constantly compare the output of what the size of the city will be with the settings of the used parameters and rules

- 50 m platforms.
- 100 m platforms.

Space in between

- 2,5 meters.
- 5 meters.
- 7,5 meters.

STUDIES

Conclusion

- Due to the gap between the platforms, the city boundary will occupy more space compared to land
- The gaps can be efficiently used for recreational purposes and water transportation network

We start with Tollebeek to get a grip on the script. The list of functions are specific and this can be used as a basic model. The next step will be to change the conditions of the script and derive output for other cities.

STUDIES

Tollebeek

Function	Area	Percentage on Boundary area
Living Residential	362.637	20.8
Business Commercial	19.602	1.1
Business Light Industrial	29.403	1.6
Business Agriculture	686.070	39.4
Business Catering Industry	9.801	0.6
Public Park and open space	460.647	26.4
Public Building	19.602	1.1
Public Sports	49.005	2.8
Public educational Institute	9.801	0.6
Water	29.403	1.6
		$\mathbf{9 6}$
Total area	$\mathbf{1 . 6 7 5 . 9 7 1 ~ m 2 ~}$	
Total boundary area:	$\mathbf{1 . 7 4 0 . 2 4 0 ~ m 2 ~}$	
4 \% is unused or doesn't have any specific functional distribution		

Study on the existing city on land
This shows the distribution of functions

Percentage on Boundary area
20.8
1.1
1.6
39.4
0.6
26.4
1.1
2.8
0.6
1.6

96
1.740 .240 m 2

304

STUDIES

On land
Total boundary area:
1.740.240 m2

Considering without gaps between the platform gives an exact picture on the number of platforms. (literal translation from land to water)

Platform size
Total boundary area:
Total platform area
Scaling factor 1.06955
Total number of platforms

100 m
1.745 .000 m 2
1.745 .000 m 2

403 units

Platform size
50 m
Total boundary area
1.741 .800 m 2
1.741 .800 m 2
1.03620

1609 units

STUDIES

Platform with no gap between platforms

Function	Number of units required
	100 m platform

Living Residential
Business Commercial
Business Light Industrial
Business Agriculture
Business Catering Industry
Public Park and open space
Public Building
Public Sports
Public educational Institute
Water
Total
403
87350
5 19
7 27
$165 \quad 660$
2 9
110442
$5 \quad 19$
$12 \quad 46$
3
7

Number of units required

 50 m platform3501966094421946

10
27

1609

306

STUDIES

Rules

Platform	100 m
Platform depth	4 m
Slope of platform	0
Gap between	2.5 m

Area occupied on water 1.899 .400 m 2
Total area of platforms $\quad 1.745 .000 \mathrm{~m} 2$
Scaling of boundary 1.1159
Scaling of program 1.0433

STUDIES

Rules

Gap of 5.0 m
Platform
Platform depth
Slope of platform
Gap between platforms 5.0 m
Area occupied on water 2.060 .400 m 2
Total area of platforms $\quad 1.745 .000 \mathrm{~m} 2$
$\begin{array}{ll}\text { Scaling of boundary } & 1.1622 \\ \text { Scaling of program } & 1.0866\end{array}$

Gap of 7.5m
100 m
4 m
0
7.5m
2.227 .800 m 2
1.745 .000 m 2
1.2085
1.1299

STUDIES

Rules

Platform	50 m
Platform depth	4 m
Slope of platform	0
Gap between	2.5 m

Area occupied on water 2.056 .500 m 2
Total area of platforms $\quad 1.741 .800 \mathrm{~m} 2$
$\begin{array}{ll}\text { Scaling of boundary } & 1.126 \\ \text { Scaling of program } & 1.0866\end{array}$

SRACE@SEA

STUDIES

Rules

Gap of 5.0m

Platform
Platform depth
Slope of platform
Gap between platforms 5.0 m
Area occupied on water 2.397 .400 m 2
Total area of platforms
1.741 .800 m 2

Scaling of boundary
Scaling of program
1.2165
1.1732

Gap of 7.5m
50 m
4 m
0
7.5m
2.764 .400 m 2
1.741 .800 m 2
1.306
1.2598

Number of platforms dedicated to a particular function remains the same We see a constant change on the area occupied on water based on the rules

STUDIES

To study the built area on a platform
The platforms are aligned to the road network The platform size is 100 m

With this, we studied the built area of each platform.
And the proportion to the transportation system etc.,.

This is a parallel to study 3. trying to understand how we can replicate a same network from land to water.

SPACE@SEA

STUDIES

Basic ideation on how primary transport network can work.
SPACE@SEA

STUDIES

Functions

Residential

Commercial
Light Industry
Agriculture
less then 3 layers
21-25 \% built
15 \% road
$53-57 \%$ open and lawn area
$21-25$ \% built
60% open and lawn area
35\% built
55% open and road
type1 100\% agri land
type 2 12-15\% road or walk ways
balance agri land
type $3 \quad 10 \%$ water
10% open or green

Catering $\quad 30 \%$ built
Park
Public

Sports
Education
open green lawn 6-10 \% pedestrian 15\% built open and green area road
15 \% built 45 \% sports field 15 \% built

We have to efficiently redefine the space - because we have lot of open spaces on land.
When we look in terms of exact footprint of a particular function we can reduce number of platforms.
And we can redefine number of platforms towards a function.
Each function can have different occupancy percentage on each platforms.

STUDIES

Function	Area $\mathbf{(m 2)}$	Footprint $\mathbf{(m 2)}$
Living Residential	362.637	55.248
Business Commercial	19.602	13.596
Business Light Industrial	29.403	14.074
Business Agriculture	686.070	561.210
Business Catering Industry	9.801	3.520
Public Park and open space	460.647	571.705
Public Building	19.602	4.821
Public Sports	49.005	20.284
Public educational Institute	9.801	1.375
Water	29.403	74.225

Total area

1.675 .971 m2
1.320 .058 m 2

- We can see a drop in numbers when we just consider exact required footprint.
- Also the road network and the sizes vary from the existing (in land), to the triangle grid system, so its better to begin with exact foot print.
- We try to optimize on number of platforms.

STUDIES

Now we know the exact amount of foot print to be addressed for.
We have already done studies on different types of built form on a triangle platform.

With those studies we get the set of outputs.
These analysis becomes a toolbox to the script, we define things based on this analysis

Toolbox

2

$$
\begin{gathered}
100 \mathrm{~m} \\
4330 \\
\mathrm{~m} 2
\end{gathered}
$$

3

4

5

7
6

100 m	100 m	100 m
4330	4330	4330
m 2	m 2	m 2

6

6

100 m
4330
m 2
6

100 m
4330
m 2
100 m
4330
m 2

Type

Side	100 m
Area	4330
	m 2

Land use
\%

Buildings	$48,9 \%$	$44,9 \%$
Road	$22,8 \%$	$26,8 \%$
Green	$28,3 \%$	$28,3 \%$

$62,4 \%$	$35,2 \%$
$28,8 \%$	$22,8 \%$
$8,8 \%$	42%

$43,3 \%$
$28,8 \%$
$27,9 \%$
$29,9 \%$
$36,5 \%$
$33,6 \%$
$34,5 \%$
37%
$28,5 \%$

42,1\%
Road 22,8\% 26,8\%
8,8\%
42\%
27,9\%
33,6\%
39,1\%
18,8\%

SRACE@SEA

STUDIES

Remodeling the city
Total area of all built structure
Grass
Total

	Type $\mathbf{1}$	Type 3	Type 7	Type 1
	$\mathbf{1 0 0} \mathbf{m}$ size	$\mathbf{1 0 0} \mathbf{m}$ size	$\mathbf{1 0 0} \mathbf{m}$ size	$\mathbf{5 0} \mathbf{m}$ size
Built-up area	2116	2700	1495	576
Green	1230	383	1234	45
Road	984	1247	1602	461
Agriculture -				
Platform	$3346+984$	3680	3680	920
Number platform	168	$\mathbf{1 5 3}$	$\mathbf{1 5 3}$	$\mathbf{6 1 0}$
Built Number	$\mathbf{5 3}$	16086	$\mathbf{7 5}$	$\mathbf{1 9 3}$
Green utilized	65190	555619	92550	8685
Balance green and forest	506515	650	571705	563020
15\% for walkways	650	$\mathbf{1 5 1}$	650	
Number walkway	$\mathbf{1 3 8}$	$\mathbf{3 4 6}$	$\mathbf{1 5 6}$	$\mathbf{6 1 2}$
Total number	$\mathbf{3 5 9}$	$\mathbf{3 8 4}$	$\mathbf{1 4 1 5}$	

SRACE@SEA

STUDIES

STUDIES

Scenario 1 -

Function	Foot print	platform typology	Percentage	Built-\%	Road-\%	Green-\%	blue or cut on platform-\%	No. Of layers	Number of platforms	Total Platform
Living Residential	55248	Type -7	60	42,1	39,1	18,8		4	14	
		Type -6	40	29,9	36,5	33,6		3	17	31
Business Commercial	13596	Type -7	100	42,1	39,1	18,8		3	7	7
Business Light Industrial	14074	Type -7	100	42,1	39,1	18,8		3	8	8
Business Agriculture	561210		100	85	10	5			152	152
Business Catering Industry	3520	Type -7	100	42,1	39,1	18,8		3	2	2
Public Park and open space	571705		100	92	8	0			121	121
Public Building	4821	Type -7	100	42,1	39,1	18,8		4	2	2
Public Sports	20284	Type -7	20	42,1	39,1	18,8		3	2	
			80	100	0	0			4	6
Public educational Institute	1375	Type -7	100	42,1	39,1	18,8		3	1	1
Water	74225		100	0	0	4	96		18	18
	1320058									348

- Idealy if we pick different type and compare. For the required amount of footprint we get the exact number of platforms. Still transportation has to be integrated.

SRACE@SEA

STUDIES

Comparatively studying the results with 2 different sets of typologies of built form on the platform.
One function is considered and the exact same foot print is evaluated for both the sets.

In this scheme the road transportation is not considered. The dimension for the road is 3,5 meters - accommodating complete pedestrian walkability.

- Picking which typology is going to be used in what proportions.

STUDIES

Set - 2

Type -1
Platform
Area
Built
Road
Green
-100 m .

- 4330 m2
- 1891 m2 -43,7\%
-1773 m2 - 41%
-666 m2 -15,3 \%

Type-4

Type-5
Platform $\quad-50 \mathrm{~m}$
Area
Road

- 1083 m2
-279 m2 - 25,7 \%
$-434 \mathrm{~m} 2-40 \%$
$-370 \mathrm{~m} 2-34,1 \%$

Type -3

Platform	-50 m	
Area	-1083 m 2	
Built	-358 m 2	-33%
Road	-725 m 2	-67%

STUDIES

Function	Foot print	platform typology	Percentage	Built-\%	Road-\%	Green-\%	blue or cut on platform-\%	No. Of layers
Number of platforms	Total Platform							
Living Residential	29535	Type -1	60	42,1				3
	Type -2	40	29,9				10	

- By changing the percentage of a type and the number of layer - we can control the density.

sPACE@sEA

STUDIES

Function	Foot print	platform typology	Percentage	Built-\%	Road-\%	Green-\%	blue or cut on platform-\%	No of layers
Number of platforms	Total Platform							
Living Residential	29535	Type -1	40	42,1				3

sPACE@sEA

STUDIES

Function	Foot print	platform typology	Percentage	Built-\%	Road-\%	Green-\%	blue or cut on platform-\%	No of layers	Number of platforms	Total Platform
Living Residential	29535	Type -1	74	43,7				3	12	
		Type-2	13	44,4				3	2	
		Type-3	2,4	33				3	2	
		Type-4	6,2	56,6				3	3	
		Type-5	4,4	40				3	3	22

- In this the transportation is integrated.

spACE@sEA

STUDIES

Function	Foot print	platform typology	Percentage	Built-\%	Road-\%	Green-\%	blue or cut on platform-\%	No of layers	Number of platforms	Total Platform
Living Residential	29535	Type-1	74	43,7				4	9	
		Type -2	13	44,4				3	2	
		Type -3	2,4	33				5	1	
		Type -4	6,2	56,6				3	3	
		Type-5	4,4	40				3	3	18

SRACE@SEA

STUDIES

- With variables in percentage and the number of layers based on the type, we can keep optimizing number of platforms and density required.

Function	Foot print	platform typology	Percentage	Built-\%	Road-\%	Green-\%	blue or cut on platform-\%	No of layers	Number of platforms	Total Platform
Living Residential	29535	Type -1	20	43,7				5	2	
		Type -2	40	44,4				5	4	
		Type -3	10	33				5	5	
		Type -4	10	56,6				4	4	
		Type-5	20	40				6	7	22

STUDIES

Now we will just try out with one single typology. Compare it with both the type of platform. The given function is constant in both conditions.

Conditions -

Given foot print - 40,000 m2.
Average initial layers - 2
Total gross area -80,000 m2.
Per unit size - 90m2

Selected type.

Size	-100 m
Built	-2488 m 2
Built \%	$-57,8 \%$
Road \% (walkways)	$-26,7 \%$
Green \%	$-15,5 \%$

Scenario -1		Scenario -2	
Platform	-100 m.	Platform	-100 m.
Area	-4330 m 2	Area	-4330 m 2
Built	$-57,8 \%$	Built	$-57,8 \%$
No. of Layers	-2	No. of Layers	-4
No. of Platforms -16	No. of Platforms -8		
Actual built		Actual built	
ground cover	-39808 m 2	ground cover	-19904 m 2
Gross area		Gross area	
per platform	$-4976 \mathrm{m2}$	per platform	-9952 m 2
Density	$-55,2$	Density	$-110,5$
(No of units per platform)	(No of units per platform)		

Scenario -3

Platform	-100 m.
Area	-4330 m 2
Built	$-57,8 \%$

No. of Layers -6
No. of Platforms - 5
Actual built
ground cover - 12440 m 2
Gross area
per platform $\quad-14928 \mathrm{~m} 2$
Density -166
(No of units per platform)

- We can optimize the number of platform but the distance between the block is too narrow, so the built \% sholud be reduced to find a better spacing between the blocks.

STUDIES

Conditions -

Given foot print - 40,000 m2.
Average initial layers - 2
Total gross area $-80,000 \mathrm{~m} 2$.
Per unit size -90 m 2

Selected type.

Size	-100 m	Gross area	
Built	-2119 m 2	Density	-4238 m 2
Built \%	$-48,9 \%$	(No of units per platform)	
Road \% (walkways)	$-26,7 \%$		
Green \%	$-24,4 \%$		
Water transportation.			

Scenario -1

Platform
Area
Built
No. of Layers
$-48,9 \%$

No. of Platform
Actual built ground cover Gross area per platform $\quad-4238 \mathrm{~m} 2$ Density -47
-48,9 \%
-26,7 \%

- 24,4 \%

Water transportation.

[^0]
STUDIES

Conditions -

Given foot print - 40,000 m2.
Average initial layers - 2
Total gross area $-80,000 \mathrm{~m} 2$.
Per unit size -90 m 2

Selected type.

Size	-100 m
Built	-1891 m 2
Built \%	$-43,6 \%$
Road \%	$-41,1 \%$
Green \%	$-15,3 \%$

Built
Built \%
Green \%

Scenario -1

Platform

Area
Built

$$
-4330 \text { m2 }
$$

$$
-43,6 \%
$$

No. of Layers

- 2

No. of Platforms - 21
Actual built
ground cover - 39711 m2
Gross area
per platform $\quad-3782 \mathrm{~m} 2$
Density

- 42
(No of units per platform)

Scenario -2

Platform $\quad-100 \mathrm{~m}$.
Area $\quad-4330 \mathrm{~m} 2$
Built $\quad-43,6 \%$
No. of Layers
-4
No. of Platforms - 11
Actual built
ground cover - 20801 m2
Gross area per platform $\quad-7564 \mathrm{~m} 2$ Density - 84
(No of units per platform)

Scenario -3

Platform

- 100 m .

Area - 4330 m 2

Built
-43,6 \%
No. of Layers -6
No. of Platforms - 7
Actual built ground cover - 13237 m 2
Gross area
per platform - 11346 m 2
Density - 126
(No of units per platform)

- In this we have incorporated the road way transport system, the road width is 16 m . We obtain a primary road network.
- We can check the optimization, there is not enough space for road network. So the built \% has to be reduced.

Conditions -

Given foot print Average initial layers Total gross area
Per unit size Gap between platform With pedestrian

Platform -1

- 10,000 m2.
- 2
- 20,000 m2.
-90m2 - for density calculation
- 5 m

$\begin{array}{llll}\text { Built \% } & -51,4 \% & \text { Built \% } & -40 \% \\ \text { Road \% (walkway) } & \text { Road \% (walkway) } \\ & -26 \% & & -26 \% \\ \text { Green \% } & -22,6 \% & \text { Green \% } & -34 \%\end{array}$
Platform -2

| Density |
| :---: | :---: |
| 12 |
| 9,6 |

Platform	Area (m2)	Percentage distribution	Built (m2)	Built \%	No. Of Layers	No of Platforms	Gross area per platform (m2)	Density
1	1083	41,2	557	51,4	4	3	2228	25
2	1083	32,2	434	40	4	4	1736	19
3	1083	26,5	358	33	4	4	1432	16

Platform	Area (m2)	Percentage distribution	Built (m2)	Built \%	No. Of Layers	No of Platforms	Gross area per platform (m2)	
1	1083	41,2	557	51,4	6	2	3342	
2	1083	32,2	434	40	6	2	2604	29
3	1083	26,5	358	33	6	2	2148	24

STUDIES

Conditions -

Given foot print
Average initial layers
Total gross area
Per unit size
Gap between platform With road transportation.
$-10,000 \mathrm{~m} 2$.

- 2
- 20,000 m2.
-90m2 - for density calculation
$-5 \mathrm{~m} \quad$ Built \%
Road \% $\quad-47 \%$
\%
Green \% - 12,2

Platform -

Built \% - 34,9\%
Built \%

- 0

Road \%

- 40,8 \%

Road \%

- 91

Green \%

- 24,3 \%
\%
Green \%
- 9 \%

Platform	Area (m2)	Percentage distribution	Built $(\mathbf{m 2)}$	Built \%	No. Of Layers	No of Platforms	Gross area per platform (m2)	Density
1	1083	57,3	509	47	2	11	1018	11,3
2	1083	42,7	378	34,9	2	11	756	8,4
3	1083	0	0	0	2	0	0	0

Platform	Area (m2)	Percentage distribution	Built (m2)	Built \%	No. Of Layers	No of Platforms	Gross area per platform (m2)	Density
1	1083	57,3	509	47	4	6	2036	22,6
2	1083	42,7	378	34,9	4	6	1512	16,8
3	1083	0	0	0	4	0	0	0

Platform	Area (m2)	Percentage distribution	Built (m2)	Built \%	No. Of Layers	No of Platforms	Gross area per platform (m2)	Density
1	1083	57,3	509	47	6	4	3054	34
2	1083	42,7	378	34,9	6	4	2268	25,2
3	1083	0	0	0	6	0	0	0

$=-A B=O=A$

STUDIES

Comparison study on density -

Assuming we have same amount of built \% for both 50 m and 100 m platforms. Having same amount of distribution.

Given foot print
Average initial layers
Total gross area
Per unit size
Gap between platform

- 50,000 m2.
- 2
- 100,000 m2.
-90 m 2 - for density calculation
- 5 m

Platform	Area (m2)	Percentage distribution	Built $(\mathrm{m} 2)$	Built \%	No. Of Layers	No of Platforms	Gross area per platform (m2)	Density
1	1083	41,2	557	51,4	2	37	1114	12,3
2	1083	32,2	434	40	2	37	868	9,6
3	1083	26,5	358	33	2	37	716	8

Platform	Area (m2)	Percentage distribution	Built $(\mathrm{m2})$	Built \%	No. Of Layers	No of Platforms	Gross area per platform (m2)	Density
1	4330	41,2	2226	51,4	2	9	4452	49,4
2	4330	32,2	1732	40	2	9	3464	38,4
3	4330	26,5	1429	33	2	9	2858	31,7

SRACE@SEA

STUDIES

Platform	Area (m2)	Percentage distribution	Built (m2)	Built $\%$	No. Of Layers	No of Platforms	Gross area per platform (m2)	Density
1	1083	41,2	557	51,4	4	19	2228	24,7
2	1083	32,2	434	40	4	19	1736	19,2
3	1083	26,5	358	33	4	19	1432	16

Platform	Area (m2)	Percentage distribution	Built $(\mathrm{m2})$	Built $\%$	No. Of Layers	No of Platforms	Gross area per platform (m2)	Density
1	4330	41,2	2226	51,4	4	5	8904	99
2	4330	32,2	1732	40	4	5	6928	77
3	4330	26,5	1429	33	4	5	5716	63,5

Platform	Area (m2)	Percentage distribution	Built $(\mathbf{m 2})$	Built \%	No. Of Layers	No of Platforms	Gross area per platform (m2)	Density
1	1083	41,2	557	51,4	6	12	3342	37
2	1083	32,2	434	40	6	12	2604	29
3	1083	26,5	358	33	6	12	2148	23,8

Platform	Area (m2)	Percentage distribution	Built (m2)	Built \%	No. Of Layers	No of Platforms	Gross area per platform (m2)	Density
1	4330	41,2	2226	51,4	6	3	13356	148,4
2	4330	32,2	1732	40	6	3	10392	115,4
3	4330	26,5	1429	33	6	3	8574	95,2

STUDIES

Output from the studies -

- Platforms with just pedestrian network has got higher density comparing to the one with road transport network.
- 100 m platform has got 4 times the values compered with one 50 m platform.
- In proportion 100 m platform workes fine with better outputs - we can compare one 100 m platform with 2 layers - to a 50 m platform with 8 layers - we get a same amount of density.

STUDIES

Now we are reflecting the study on the density and the transport system on Tollebeek to test results.

	Foot print (m2)	
	Wunction	With this data - we will study it in 4 condition -
Living Residential	55.248	- $\mathbf{5 0} \mathbf{~ m}$ platform with pedestrian walkways and water
Business Commercial	13.596	transport.
Business Light Industrial	14.074	- $\mathbf{5 0} \mathbf{m}$ platform with road transport.
Business Agriculture	561.210	- 100 m platform with pedestrian walkways and water
Business Catering Industry	3.520	transport.
Public Park and open space	571.705	- 100 m platform with road transport.
Public Building	4.821	20.284
Public Sports	Same types of platforms area going to be used as in	
Public educational Institute	1.375	74.225

sRACE@SEA

STUDIES

Condition-1

Platform	$-\mathbf{5 0} \mathrm{m}$
Slope on Platform edge	-0
Platform area	-1083 m 2
Platform depth	-3 m
Gap between platform	$-\mathbf{5 m}$

Platform -1

Platform -4

Park and open space
Built \% - 0
Road \% (walkway)

- 33 \%

Green \%
67 \%

Platform -2

Agriculture

Platform -3

Park -
$571705-46588=$
525117

	Function	$\begin{aligned} & \text { Foot Print } \\ & (\mathrm{m} 2) \end{aligned}$	Type	Percentage Distribution	No of Layers	No of Platforms	Total Platforms
	Living Residential	55248	1	41,3	2	41	123
			2	32,2	2	41	
			3	26,5	2	41	
	Business Commercial	13596	1	41,3	2	10	30
			2	32,2	2	10	
			3	26,5	2	10	
	Business Light Industrial	14074	1	41,3	2	10	30
			2	32,2	2	10	
			3	26,5	2	10	
	Business Agriculture	561210	4	100	1	773	773
	Business Catering Industry	3520	1	41,3	2	3	9
			2	32,2	2	3	
			3	26,5	2	3	
	Public Park and open space	525117	4	100	1	724	724
	Public Building	4821	1	41,3	2	4	12
			2	32,2	2	4	
			3	26,5	2	4	
	Public Sports	20284	1	20	2	7	22
			4	80	1	15	
	Public educational Institute	1375	1	41,3	2	1	3
			2	32,2	2	1	
			3	26,5	2	1	
Total - 1828	Water	74225	4	100	1	102	102

STUDIES

Condition-2

Platform	$-\mathbf{5 0} \mathrm{m}$
Slope on Platform edge	-0
Platform area	-1083 m 2
Platform depth	-3 m
Gap between platform	$-\mathbf{5 m}$

Platform - 1

Built \%	-47%
Road \%	$-40,8 \%$
Green \%	$-12,2 \%$

Green \%
Platform -4

Park and open space
Built \%

- 0

Road \% (walkway)
Green \%
-67%

Platform -2

Platform -3

Green \%

- 9 \%

Water

Park -
$571705-41080=$ 530625

STUDIES

Same boundary profile as Tollebeek.

STUDIES

Condition-3

Platform	$-\mathbf{1 0 0} \mathbf{m}$
Slope on Platform edge	-0
Platform area	$-\mathbf{4 3 3 0} \mathrm{m} 2$
Platform depth	-3 m
Gap between platform	$-\mathbf{5 m}$

Function	Foot Print $(\mathrm{m} 2)$	Type	Percentage Distribution	No of Layers	No of Platforms	Total Platforms
Living Residential	55248	1	100	2	26	26
Business Commercial	13596	1	100	2	6	6
Business Light Industrial	14074	1	100	2	7	$\mathbf{7}$
Business Agriculture	561210	2	100	1	206	$\mathbf{2 0 6}$
Business Catering Industry	3520	1	100	2	2	$\mathbf{2}$
Public Park and open space	518879	2	100	1	179	$\mathbf{1 7 9}$
Public Building	4821	1	100	2	2	$\mathbf{2}$
Public Sports	20284	1	20	2	2	
		2	80	1	4	$\mathbf{6}$
Public educational Institute	1375	1	100	2	1	$\mathbf{1}$
Water	74225	2	100	1	27	$\mathbf{2 7}$

Platform -1

Platform -2

Park and open space

Agriculture

Park -
$571705-52826=518879$
Built \% - 0

Road \% (walkway)
Green \%

- 63 \%

Total - 462

STUDIES

Condition-4

Platform	$-\mathbf{1 0 0} \mathrm{m}$
Slope on Platform edge	-0
Platform area	$-\mathbf{4 3 3 0} \mathrm{m} 2$
Platform depth	-3 m
Gap between platform	$-\mathbf{5 m}$

Function	Foot Print $(\mathbf{m 2})$	Type	Percentage Distribution	No of Layers	No of Platforms	Total Platforms
Living Residential	55248	1	100	2	29	29
Business Commercial	13596	1	100	2	7	$\mathbf{7}$
Business Light Industrial	14074	1	100	2	7	7
Business Agriculture	561210	2	100	1	206	206
Business Catering Industry	3520	1	100	2	2	$\mathbf{2}$
Public Park and open space	538581	2	100	1	197	197
Public Building	4821	1	100	2	3	$\mathbf{3}$
Public Sports	20284	1	20	2	2	
		2	80	1	4	
Public educational Institute	1375	1	100	2	1	$\mathbf{1}$
Water	74225	2	100	1	27	$\mathbf{2 7}$

Platform -2
Park and open
Built \%
Road \% (walkway)
Green \%

Park -
$571705-33124=$
538581

Water

Same boundary profile as Tollebeek.

Condition-3a

Platform	-100 m
Slope on Platform edge	-0
Platform area	-4330 m 2
Platform depth	-3 m
Gap between platform	-5 m

Platform -1

Built \%	$-51,4 \%$	Built \%	-40%
Road \% (walkway) -26%	Road \% (walkway) -26%		
Green \%	$-22,6 \%$	Green \%	-34%

Platform -3

Built \%	-33%
Road \% (walkway) -67%	
Green \%	-0

Platform -4

Park and open space		Agriculture	Water
Built \%	-0	Park -	
Road \% (walkway) - 33%	$571705-46588=525117$		
Green \%	-67%		

Total - 461

Function	$\begin{aligned} & \text { Foot Print } \\ & \text { (m2) } \end{aligned}$	Type	Percentage Distribution	No of Layers	No of Platforms	Total Platforms
Living Residential	55248	1	41,3	2	10	30
		2	32,2	2	10	
		3	26,5	2	10	
Business Commercial	13596	1	41,3	2	3	9
		2	32,2	2	3	
		3	26,5	2	3	
Business Light Industrial	14074	1	41,3	2	3	9
		2	32,2	2	3	
		3	26,5	2	3	
Business Agriculture	561210	4	100	1	193	193
Business Catering Industry	3520	1	41,3	2	1	3
		2	32,2	2	1	
		3	26,5	2	1	
Public Park and open space	525117	4	100	1	181	181
Public Building	4821	1	41,3	2	1	3
		2	32,2	2	1	
		3	26,5	2	1	
Public Sports	20284	1	20	2	2	6
		4	80	1	4	
Public educational Institute	1375	1	41,3	2	0	1
		2	32,2	2	1	
		3	26,5	2	0	
Water	74225	4	100	1	26	26

Just for comparison no -built form
STUDIES
Condition - 4a

Platform
Slope on Platform edge
Platform area
Platform depth

- 100 m
- 0

Gap between platform

Platform -1

Built \%	-47%	Built \%	$-34,9 \%$
Road \%	$-40,8 \%$	Road \%	$-40,8 \%$
Green \%	$-12,2 \%$	Green \%	$-24,3 \%$

Platform -3

Built \%	-0
Road \%	-91%
Green \%	-9%

Platform -4
Park and open space Agriculture Water
$\begin{array}{lll}\text { Built \% } & -0 & \text { Park - } \\ \text { Road \% (walkway)- } 33 \% & 571705-47400=524305 \\ \text { Green \% } & -67 \% & \end{array}$

Total - 459

- 4330 m2
- 3 m
- 5 m

Platform -2

Road \%
Green \%

- 12,2 \%

Green \%

- 24,3 \%

Function	$\begin{aligned} & \text { Foot Print } \\ & \text { (m2) } \end{aligned}$	Type	Percentage Distribution	No of Layers	No of Platforms	Total Platforms
Living Residential	55248	1	57,3	2	16	32
		2	42,7	2	16	
Business Commercial	13596	1	57,3	2	4	8
		2	42,7	2	4	
Business Light Industrial	14074	1	57,3	2	4	8
		2	42,7	2	4	
Business Agriculture	561210	4	100	1	773	193
Business Catering Industry	3520	1	57,3	2	1	2
		2	42,7	2	1	
Public Park and open space	524305	4	100	1	181	181
Public Building	4821	1	57,3	2	1	2
		2	42,7	2	1	
Public Sports	20284	1	20	2	2	6
		4	80	1	4	
Public educational Institute	1375	1	57,3	2	1	1
		2	42,7	2	0	
Water	74225	4	100	1	26	26

STUDIES

Function	Area (m2)
	225.423
Living Residential	19.602
Business Commercial	9.801
Business Light Industrial	9.801
Business Catering Industry	9.801
Public Building	29.403
Public Sports	9.801
Public educational Institute	137.214
Public forest	147.015

Total area

597.861 m2

Total boundary area - 641.974 m 2

- Re-mapping the functions and the boundary

STUDIES

Function

Living Residential
Business Commercial
Business Light Industrial
Business Catering Industry 580
Public Building 4.821
Public Sports 20.284
Public educational Institute $\quad 1.375$
Public forest 113.347
Public grass land 114.372
Total area
. 936
7.706
3.059

Foot print (m2)

$$
114.372
$$

STUDIES

The distribution of the functions on triangle

100 meter platform.

50 meter platform.

- Distribution of functions based on the total area. So to see how functions are placed.

STUDIES

Same boundary profile as Tollebeek

Condition-1

Platform	$-\mathbf{5 0} \mathrm{m}$
Slope on Platform edge	-0
Platform area	-1083 m 2
Platform depth	-3 m
Gap between platform	$-\mathbf{5 m}$

Platform -1

Built \%	$-51,4 \%$	Built \%	-40%
Road \% (walkway)	Road \% (walkway)		
	-26%		-26%
Green \%	$-22,6 \%$	Green \%	-34%

Platform -4

Built \% - 0
Road \% (walkway)

- 33 \%

Green \%
-67 \%

Platform -2

40 \%

26 \%
34\%

Grass Land -
$114372-33715=$ 80657

STUDIES

Same boundary profile as Tollebeek.

Function	$\begin{aligned} & \text { Foot Print } \\ & \quad(\mathrm{m} 2) \end{aligned}$	Type	Percentage Distribution	No of Layers	No of Platforms	Total Platforms
Living Residential	53936	1	41,3	2	40	120
		2	32,2	2	40	
		3	26,5	2	40	
Business Commercial	7706	1	41,3	2	6	18
		2	32,2	2	6	
		3	26,5	2	6	
Business Light Industrial	3059	1	41,3	2	2	6
		2	32,2	2	2	
		3	26,5	2	2	
Business Catering Industry	580	1	41,3	2	1	1
		2	32,2	2	0	
		3	26,5	2	0	
Public Building	4821	1	41,3	2	4	12
		2	32,2	2	4	
		3	26,5	2	4	
Public Sports	20284	1	20	2	7	22
		4	80	1	15	
Public educational Institute	1375	1	41,3	2	1	3
		2	32,2	2	1	
		3	26,5	2	1	
Public forest	113347	4	100	1	156	156
Public Grass land	80657	4	100	1	111	111

Total - 449

```
Public Grass land
```


STUDIES

Condition-2

Platform	$-\mathbf{5 0} \mathrm{m}$
Slope on Platform edge	-0
Platform area	-1083 m 2
Platform depth	-3 m
Gap between platform	$-\mathbf{5 m}$

Platform -1

Built \%
Road \%
Green \%

- 47 \%
- 40,8 \%
- 12,2 \%

Platform -2

Platform -3

Platform -4

Forest
Built \%

- 0

Road \% (walkway)
-33%
Green \% - 67%

Grass Land -$114372-33180=$ 81192

STUDIES

Same boundary profile as Tollebeek.

Function	$\begin{aligned} & \text { Foot Print } \\ & \text { (m2) } \end{aligned}$	Type	Percentage Distribution	No of Layers	No of Platforms	Total Platforms
Living Residential	53936	1	57,3	2	61	122
		2	42,7	2	61	
Business Commercial	7706	1	57,3	2	9	18
		2	42,7	2	9	
Business Light Industrial	3059	1	57,3	2	3	6
		2	42,7	2	3	
Business Catering Industry	580	1	57,3	2	1	2
		2	42,7	2	1	
Public Building	4821	1	57,3	2	5	10
		2	42,7	2	5	
Public Sports	20284	1	20	2	8	23
		4	80	1	15	
Public educational Institute	1375	1	57,3	2	2	4
		2	42,7	2	2	
Public forest	113347	4	100	1	156	156
Public Grass land	81192	4	100	1	112	112

STUDIES

Condition-3

Platform	$-\mathbf{1 0 0} \mathrm{m}$
Slope on Platform edge	-0
Platform area	$-\mathbf{4 3 3 0} \mathrm{m} 2$
Platform depth	$-\mathbf{3 m}$
Gap between platform	$-\mathbf{5 m}$

Platform -1

Same boundary profile as Tollebeek

Function	Foot Print (m2)	Type	Percentage Distribution	No of Layers	No of Platforms	Total Platforms
Living Residential	53936	1	100	2	25	25
Business Commercial	7706	1	100	2	4	4
Business Light Industrial	3059	1	100	2	1	1
Business Catering Industry	580	1	100	2	1	1
Public Building	4821	1	100	2	2	2
Public Sports	20284	1	20	2	2	6
		2	80	1	4	1
Public educational Institute	1375	1	100	2	1	42
Public Forest	113347	2	100	1	42	29
Public Grass Land	78491	2	100	1	29	2

Road \% (walkway) Grass land -

Built \% - 0

Green \% - 63 \%

$$
-63 \%
$$

Grass Land 114372 - 35881 = 78491

Total - 111

STUDIES

Condition-4

Platform	$\mathbf{- 1 0 0} \mathrm{m}$
Slope on Platform edge	-0
Platform area	$-\mathbf{4 3 3 0} \mathrm{m} 2$
Platform depth	$-\mathbf{3 m}$
Gap between platform	$-\mathbf{5 m}$

Function	Foot Print $(\mathrm{m} 2)$	Type	Percentage Distribution	No of Layers	No of Platforms	Total Platforms
Living Residential	53936	1	100	2	29	29
Business Commercial	7706	1	100	2	4	4
Business Light Industrial	3059	1	100	2	2	$\mathbf{2}$
Business Catering Industry	580	1	100	2	1	$\mathbf{1}$
Public Building	4821	1	100	2	3	$\mathbf{3}$
Public Sports	20284	1	20	2	2	$\mathbf{6}$
		2	80	1	4	$\mathbf{6}$
Public educational Institute	1375	1	100	2	1	$\mathbf{1}$
Public Forest	113347	2	100	1	42	42
Public Grass Land	86548	2	100	1	32	32

Total - 122

Platform -1

Platform -2
Same boundary profile as
Tollebeek.

Forest
Built \% - 0
Road \% (walkway) Grass land -

Green \%

- 63 \%

Grass land

$$
114372-27824=
$$

$$
78491
$$

- As we keep changing the parameters- the outputs are constantly changing.
- Through this we can compare and opt a better results.

STUDIES

Condition - 1

Output -

- This output is based on the exact placement of functions as in Tollebeek study and the number of platforms as we got in the previous output.

SRACE@SEA

STUDIES

Condition - 2

Output -

SRACE@SEA

STUDIES

Condition - 3

Output -

SRACE@SEA

STUDIES

Condition-4

Output -

- Now with this we can further rearrange the platforms to match with entry points to the city by road networks.

STUDIES

The integrated script till the previous studies.
In up coming slides - shown the outputs of condition -3, when we tune the parameters.

STUDIES

Function	Type	No of Layers	Total Platforms
Living Residential	1	2	26
Business Commercial	1	2	4
Business Light Industrial	1	2	2
Business Catering Industry	1	2	1
Public Building	1	2	3
Public Sports	1	2	6
	2	1	
Public educational Institute	1	2	1
Public Forest	2	1	42
Public Grass Land	2	1	27

SRACE@SEA

STUDIES

Function	Type	No of Layers	Total Platforms
Living Residential	1	4	13
Business Commercial	1	2	4
Business Light Industrial	1	2	2
Business Catering Industry	1	2	1
Public Building	1	2	3
Public Sports	1	2	6
	2	1	
Public educational Institute	1	2	1
Public Grass Land	2	1	42

SRACE@SEA

STUDIES

Function	Type	No of Layers	Total Platforms
Living Residential	1	4	$\mathbf{1 3}$
Business Commercial	1	4	$\mathbf{2}$
Business Light Industrial	1	2	$\mathbf{2}$
Business Catering Industry	1	2	$\mathbf{1}$
Public Building	1	3	$\mathbf{2}$
Public Sports	1	2	$\mathbf{6}$
	2	1	
Public educational Institute	1	2	$\mathbf{1}$
Public Forest	2	1	$\mathbf{4 2}$
Public Grass Land	2	1	$\mathbf{3 4}$

SRACE@SEA

STUDIES

Function	Type	No of Layers	Total Platforms
Living Residential	1	6	9
Business Commercial	1	6	$\mathbf{2}$
Business Light Industrial	1	4	$\mathbf{1}$
Business Catering Industry	1	2	$\mathbf{1}$
Public Building	1	6	$\mathbf{1}$
Public Sports	1	2	6
	2	1	
Public educational Institute	1	2	$\mathbf{1}$
Public Forest	2	1	$\mathbf{4 2}$
Public Grass Land	2	1	$\mathbf{3 6}$

SRACE@SEA

STUDIES

Pictures showing the works flow of the script -

STUDIES

1- Assign the boundary and set the conditions for the platform.

2 - From the study pick the typology and fill in the data and combinations.

3- Once we assign the combinations - we get number of platforms. Then based on this we decide number of blocks we need per function, then define them.
4- Place/define the function locations - we get a output on how the function is place and the density diagram.

SPACE@SEA

STUDIES

Observations -

- We can optimize the number of platforms, based on the density and the typology we use.
- We can define number of typologies and can see their combinations also.
- After arriving at a better results and combination, we can reorganize the platforms- to bring a compact organization.
- The road network is defined in the typologies. For main network if a separate typology needed, can be integrate with script or we can add extra platforms for this purpose.
- Water network doesn't effect much, we just have to widen the space between the platforms along the route.

STUDIES

Observations -

- Till now we have placed the function in position with the existing one on Tollebeek, also the boundary - due to which we get blank space in between because the functions are not moving relatively when the density increases.
- Next step is to attempt on this issue.

In our study -4

- We attempt to understand how functions can organize themselves based on the connectivity which we define. Also it can create its own boundary based on the organizations.

STUDIES

Study-4

Script work flow

- This is the study -4 , where we test how to arrange the function in a defined boundary or create its own boundry.
- There is two possible approach. This is tested with Masdar City data.
- This script was attempted paralley. Now we try to merge both the scripts.

STUDIES

Trial -1

Understanding the program connectivity within the set boundary.

STUDIES

The buildable area is far lesser compared to the boundary area - based on the platform conditions.
The program combinations were limited - because of the boundary. Re-configuring with in same boundary was limited.

SRACE@SEA

STUDIES

Trial -2

The possibilities of function combination is more.
We can change the function connectivity to re-configure.

The boundary is set based on the distribution.

The number of functions and proportions has to be redefined to get a better defined layout.

Redefining the script to accommodate the function and its distribution.

sRACE@SEA

STUDIES

Script Definition -

The functions are listed based on the case studyThe area proportions. It s 10% of Masdar city area.

Further splitting the functions - to URBAN BLOCKS, get a grip on defining the connectivity.

SRACE@SEA

STUDIES

List of functions defined and the proportionate area - URBAN BLOCKS

spACE@SEA

STUDIES

Defining connectivity between functions -

STUDIES

All connectivity -

SPACE@SEA

STUDIES

Configuration based on the connectivity of functions and the platforms formed based on the required area -

STUDIES

Representation of program distribution -

- So we get equal number of platforms which is almost equal to the previous study data.
- We can still break down the functions and address it to the level of city blocks, so we get a grip on the connectivity between each blocks or the functions.

STUDIES

Trial-3

No boundary rule - the function proportion remains same.

The functions are placed without overlapping and the scaling factor is proportional to the gaps between the platform.
We get a better solution.

sRACE@SEA

STUDIES

- With the study -4 now, we integrate it with existing script, so to attempt and see the program organize based on the connectivity between each of them.
- In this, we don't initially set the boundary. So we define the function and the foot print. Pick the typology and fill in the distributions. We will get the total number of platform.
- Now we define the blocks based on the outputs, by using Space Syntax tool - we organize the blocks based on the connectivity. We get various outputs based on the input iterations. Which will give out the platforms and the function organization, with density details. Then the new shape- its not constrained inside a defined boundary.

STUDIES

- An attempt is done parallel to check the outputs when we change a step in the path.
- We try it with changing the triangle platform with a square one.
- We get almost the same analysis when we tried to define certain typologies.
- So now we update the script and check the results with the analysis report.

PLATFORM DESIGN

Concept - 50 m

	Platform			Open space		Building(s)							Spacematrix			Land use \%				Apartm ents \#	Reside nts \#	Density ap./ha		Façade surface m^{2}	s/V
	Polygon sides $\#$	$\begin{gathered} \text { Side } \\ \mathrm{m} \end{gathered}$	$\begin{gathered} \text { Area } \\ \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} \text { Road } \\ \mathbf{m}^{2} \end{gathered}$	Green m^{2}	Block length m	Floors \#	Building depth m	Courtyard side m	Built-up area \mathbf{m}^{2}	Gross floor area (GFA) m^{2}	Net floor area (NFA) \mathbf{m}^{2}	Floor area Ratio FAR or FS	Gross Space Index GSI	Spaciou sness OSR	$\begin{gathered} \text { Buildings } \\ \% \end{gathered}$	Road \%	$\begin{gathered} \text { Green } \\ \% \end{gathered}$	Total \%						
ers	4	50	2500	651	529	43	3	10	23	1320	3960	2772	1.58	0.53	0.30	52.8\%	26.0\%	21.2\%	100\%	44.00	88.0	176.0	13,200	2640	0.40
orners	4	50	2500	701	529	43	3	10	23	1270	3810	2667	1.52	0.51	0.32	50.8\%	28.0\%	21.2\%	100\%	42.3	84.7	169.3	12,700	2523	0.40
ks	4	50	2500	651	817	43	3	12	19	1032	3096	2167	1.24	0.41	0.47	41.3\%	26.0\%	32.7\%	100\%	34.4	68.8	137.6	10,320	2200	0.41
	3	50	1082.5	461	45	38	3	8	10	576	1729	1211	1.60	0.53	0.29	53.3\%	42.6\%	4.1\%	100\%	19.2	38.4	177.5	5,765	1441	0.45

STUDIES

Condition - 1 - Pedestrian and Water transport

Platform	$-\mathbf{5 0} \mathrm{m}$ - Square
Slope on Platform edge	-0
Platform area	-2500 m 2
Platform depth	-3 m
Gap between platform	-5 m

Function	$\begin{aligned} & \text { Foot Print } \\ & \text { (m2) } \end{aligned}$	Type	Percentage Distribution	No of Layers	No of Platforms	Total Platforms
Living Residential	53936	1	50,8	2	43	43
Business Commercial	7706	2	41,3	2	8	8
Business Light Industrial	3059	2	41,3	2	3	3
Business Catering Industry	580	2	41,3	2	1	1
Public Building	4821	2	41,3	2	5	5
Public Sports	20284	2	20	2	4	11
		3	80	1	7	
Public educational Institute	1375	1	50,8	2	2	2
Public forest	113347	3	100	1	62	62
Public Grass land	73354	3	100	1	40	40

Total - 175

Same boundary profile as Tollebeek.

Platform -1

Built \% Road \% (walkway)
-50,8\% Built\% Platform -2

- 28 \%

$$
\text { Green \% } \quad-21,2 \%
$$

Platform -3

Road \% (walkway)

$$
-26 \%
$$

- When we compare it with the triangle platforms, its almost half the number of platforms.
- Now we can compare this situation with cost per platform between triangle and square and the density.

STUDIES

- We can continue to study various built typologies with 50 m and 100 m platform.
- Analyse the outputs and keep tuning until we get an optimal number of platforms.

sPACE@sEA

STUDIES

We continue to extend our studies on this, and adding new modules to the script - so it becomes easy to obtain a master plan based on the rules and parameters.

STUDIES

MasdarCity Abu Dhabi

Function

Living Residential
Living Community facilities
Business Offices
Business Light Industrial
Business Research and Development

Public Hotel

Public Park and open space
Public leisure
Public Education Institutional
Utilities Solar hub
Utilities Others

Area	Percentage on
(m2)	boundary area

1.565.620 20
$78.195 \quad 1$
225.161 3
$340.128 \quad 4$
$258.718 \quad 3$
$41.185 \quad 0.5$
1.913.031 24
731.1369
$444.079 \quad 6$
$360.622 \quad 4.5$
$181.383 \quad 2$

Total area

6.139 .258 m 2

Total boundary area - 8.007.072 m2

This show the distribution of function.
23% is unused or doesn't have any specific functional distribution.

STUDIES

On land -
Total boundary area - 8.007.072
m2

On water - Without any gap between the platforms.

Platform size - 100 m

Total boundary area - 8.006 .400 m 2
Total platform area -8.006 .400 m 2
Scaling factor - 1.0365
Total number of platforms - 1849 units

Platform size - 50 m
Total boundary area - 8.007 .500 m 2 Total platform area -8.007 .500 m 2 Scaling factor - 1.0179 Total number of platforms - 7397 units

STUDIES

Platform with no gap between -

STUDIES

Rules -

Platform	$\mathbf{- 1 0 0} \mathbf{~ m}$
Platform depth	$\mathbf{- 4} \mathrm{m}$
Slope of platform	-0
Gap BTW.	$\mathbf{- 2 . 5} \mathbf{~ m}$

Area occupied on water -8.714 .800 m 2
Total area of platforms -8.006 .400 m 2

Scaling of boundary - 1.0812
Scaling of programs - 1.0433

STUDIES

Rules -

Platform
Platform depth
Slope of platform
Gap BTW.
Area occupied on water 9.453 .200 m 2
Total area of platforms $\quad 8.006 .400 \mathrm{~m} 2$

Scaling of boundary
1.126

Scaling of programs
1.0866

STUDIES

Rules -

Platform	$\mathbf{- 5 0} \mathbf{~ m}$
Platform depth	-4 m
Slope of platform	-0
Gap BTW.	$\mathbf{- 2 . 5} \mathrm{m}$

Area occupied on water -9.454 .400 m 2
Total area of platforms -8.007 .500 m 2

Scaling of boundary - 1.106
Scaling of programs - 1.0866

STUDIES

Rules -

Platform	$\mathbf{5 0} \mathbf{~ m}$
Platform depth	4 m
Slope of platform	0
Gap BTW.	$\mathbf{5 ~ m}$
Area occupied on water	11.021 .000 m 2
Total area of platforms	8.007 .500 m 2

STUDIES

Function	$\begin{aligned} & \text { Area } \\ & (\mathrm{m} 2) \end{aligned}$	Percentage on total area	Number of units required if 100 m platform	Number of units required if 50 m platform
Living Residential	1.565.620	25.5	362	1441
Living Community facilities	78.195	1	15	56
Business Offices	225.161	4	55	228
Business Light Industrial	340.128	5.5	77	312
Business Research and Development	258.718	4	59	227
Public Hotel	41.185	1	14	57
Public Park and open space	1.913.031	31	438	1756
Public leisure	731.136	12	171	680
Public Education Institutional	444.079	7	100	398
Utilities Solar hub	360.622	6	85	341
Utilities Others	181.383	3	42	168
		100	1418	5664

In this iteration - 23\% unused space is majorly for transport network.

SRACE@SEA

STUDIES

Rijswijk

Function

Living Community
Living <3 layers
Living >3 Layers
Business Commercial
Business office
Business Light Industrial
Business Agriculture
Business Catering Industry
Public Park and open space
Public Building
Public educational Institute
Public Daily Care
Utility
Water

Area	Percentage on
$(\mathrm{m} 2)$	boundary area

40.000	2.7
2.050 .000	14.3

$370.000 \quad 2.6$
$620.000 \quad 4.3$
30.000
$360.000 \quad 2.5$
$90.000 \quad 0.6$
$30.000 \quad 0.2$
$4.430 .000 \quad 30.9$
$70.000 \quad 0.5$
90.000
30.000
1.130 .000
560.000

Percentage on boundary area
2.7
14.3
2.6
0.2
0.9
0.5
0.6
0.2

8
4

This show the distribution of function. 28.4 \% is unused or doesn't have any specific functional distribution.

STUDIES

On land -
Total boundary area - 14.335.323
m2

On water - Without any gap between the platforms.

Platform size - 100 m
Total boundary area Total platform area
Scaling factor
Total number of platforms 3310 units

Platform size - 50 m
Total boundary area
Total platform area
14.336 .000 m 2 14.336 .000 m 2

Scaling factor 1.01402

Total number of platforms 13243 units

STUDIES

Platform with no gap between -

Function

Living Community
Living <3 layers
Living >3 Layers
Number of units required if $\mathbf{1 0 0} \mathbf{~ m}$ platform

124
658
125
$\begin{array}{lr}\text { Business Commercial } & 199 \\ \text { Business office } & 9\end{array}$ 9 36
Business Light Industrial 114
Business Agriculture 28
Business Catering Industry 9 110Public Park and open space1423
Public Building 25
Public educational Institute 27 111
9 36Public Daily Care
Utility 368 1479
Water 179 745 179
Total480

797Business office36
465
110365725
9032977397

Number of units required if 50 m platform

500
2644

STUDIES

Function	Foot print (m2)
Living Community	16.000
Living <3 layers	823.633
Living >3 Layers	244.303
Business Commercial	183.314
Business office	24.000
Business Light Industrial	190.000
Business Agriculture	40.000
Business Catering Industry	11.000
Public Park and open space	2.976 .000
Public Building	15.827
Public educational Institute	30.519
Public Daily Care	25.399
Utility	205.887
Water	650.400
Total	5.436 .282

PARAMETRIC MODELING

How and why -

- We build our study from comparing a city form land to water.
- On land, a city is defined by its topography - which defines its boundary.

In water the boundary is defined by the platform shape, size, analytical data's of the waters, etc.

- Most of the cities are program driven - they address a particular function and rest all functions build around it.
- We cannot depict exact city planning strategies and layout for a floating city, it has to develop its own typologies and planning strategies. Due to various factors like cost, feasibility, natural constrains like depth of waters.
- The easy availability of land helps it to easily develop in future.

For floating cities the expansion has to be strategically planned as we are building it artificially from the bottom line.

TOOLBOXES

PARAMETRIC MODELING

PARAMETRIC MODELING

PARAMETRIC MODELING

ANALYSIS	Foot print (m2)
Function	53.936
Living Residential	7.706
Business Commercial	3.059
Business Light Industrial	580
Business Catering Industry	4.821
Public Building	20.284
Public Sports	1.375
Public educational Institute	113.347
Public forest	114.372

Total area
319.480 m2

With this data - we will study it in 4 condition -

- $\quad 50 \mathrm{~m}$ platform with pedestrian walkways and water transport.
- $\quad 50 \mathrm{~m}$ platform with road transport.
- $\quad 100 \mathrm{~m}$ platform with pedestrian walkways and water transport.
- 100 m platform with road transport.

Same types of platforms area going to be used as in previous studies.
We are comparing it, all with 2 layers.

PARAMETRIC MODELING

ANALYSIS

Given boundary - Fixed program position

Given boundary - Fixed program position

Total no. of platform -
449

Total no. of platform -

Given boundary - Fixed program position

Given boundary - Fixed program position

Total no. of platform -

Total no. of platform -

PARAMETRIC MODELING
ANALYSIS

Condition-3

Given boundaiy program position

Given boundary - Fixed program position

Reorganizing - on going analysis

Iteration-25

Iteration-50

Iteration - 75

SRACE@SEA

PARAMETRIC MODELING

ANALYSIS

WITH SQUARE PLATFORM

Given boundary - Fixed program position

$-1 \rightarrow A B=0=A$

PLATFORM DESIGN

CONCEPT

Platform			Open space		Building(s)							Spacematrix			Land use \%							Standards			
Polygon sides	Side	Area	Road	Green	Block length	Floors	Building depth	Courty ard side	Built-up area	Gross floor area (GFA)	Net floor area (NFA)	Floor area Ratio	Gross Space Index	Spaciou sness	Buildings	Road	Green	Total	Apartm ents	Reside nts	Density	Green		Parking	Built volume
\#	m	m^{2}	m^{2}	m^{2}	m	\#	m	m	m^{2}	m^{2}	m^{2}	FAR or FSI	GSI	OSR	\%	\%	\%	\%	\#	\#	ap./ha	m^{2}	m^{2}	\#	m^{3}
4	45	2025	688	289		2	10		1048																

SPACE@SEA

PLATFORM DESIGN

CONCEPT

Platform			Open space		Building(s)							Spacematrix			Land use \%							Standards			
Polygon sides	Side	Area	Road	Green	Block length	Floors	Building depth	Courty ard side	Built-up area	Gross floor area (GFA)	Net floor area (NFA)	Floor area Ratio	Gross Space Index	Spaciou sness	Buildings	Road	Green	Total	Apartm ents	Reside nts	Density	Green		Parking	$\begin{gathered} \text { Built } \\ \text { volume } \end{gathered}$
\#	m	m^{2}	m^{2}	m^{2}	m	\#	m	m	m^{2}	m^{2}	m^{2}	FAR or FSI	GSI	OSR	\%	\%	\%	\%	\#	\#	ap./ha	m^{2}	m^{2}	\#	m^{3}
4	90	8100	2016	2268		2	12		3816																

SPACE@SEA

Boundary Conditions options -

Now the configurations have the built in the middle and the green area outside.
Need your inputs to choose one condition.

SRACE@SEA

SRACE@SEA

SPACE@SEA

SFADE@SEA

SPACE@SEA

Function

Required footprint - m2

Living Residential
541667

21667 11
Living Community facilities8666842
Business Light Industrial

86668 42
Business Research and 130002 63
Development 21667 11
Public Hotel 190082 143
Public Park and open space 260004 178
Public leisure 151669 73
Public Education Institutional 130002 95
Utilities Solar hub 65001 32Utilities Others

SPACE@SEA

Discussions -

The optimized outputs for Living @ sea -

For 2,000 inhabitants -

Square	45 m platform	42	$7.5 m$
gap	3 levels		
Square gap	90 m platform 3 levels	15	$7.5 m$

For 50,000 inhabitants -
Square 45 m platform 949 7.5m
gap 4 levels
Square $\quad 90$ m platform $\quad 275 \quad 7.5 m$
gap 3 levels

We have taken outputs for different configurations for the first case.
We want inputs on how the configurations to be assigned based on your studies.

Estimated load for 3 layers -(G+2) building
 205 pound / sq.ft - 275 pound / sq.ft Built area in a platform - 1048 m2 Gross area $=3114 \mathrm{~m} 2$ On average - 240 pound / sq.ft = 1172 kg / sq.m
 Load $=3,684,768 \mathrm{~kg}$

- http://old.seattletimes.com/html/askth eexpert/2002122968_homehay19.html

SRACE@SEA

Amended table -

For 2,000 Inhabitants			45m Platform	
Gross Floor Area / Apartment			75 m 2	
Residents			3/ apartment	
Green			20\%	
Built			51.75\%	
Transport			33.98\%	
Total Platforms			41	
Road width for pedestrian access			4 m	
Function List	Percentage distribution of total (\%)	Plot Area (m)	Gross Area (m2)	No. Platforms
Living Residential	34	28,229	44016	-
Business Commercial	12	9,963	15720	-
Business Light Industrial	5	4,151	6288	-
Public Catering Industry	2.5	2,075	3144	-
Public Building	10	8,302	12576	-
Public Sports	10	8214	8214	-
Public Educational Institute	2.5	2,075	3144	-
Public Forest	7	5,811	5811	-
Public Grass Land	7	5,811	5811	-
Solar/ Waste Water Treatment	10	8,000	8,000	-
TOTAL	100	82631	112724	

Optimum Platform numbers -

Assumption and discussion - for Logistics @ Sea

LOCATION	North sea		
PROGRAMS		Distribution percentages \%	41
	Living Residential Business Commercial Business Light Industry Business Catering Industry Public Buildings Public Sports Public Educational Institute Public Forest Public Grassland Solar / Waste-Water Treatment		8
			2

Number of platforms -

Option 1.a -

Shape	Square	No. Of inhabitant per apartment	2
Size	45 meters	Per apartment unit size	$75 \mathrm{m2}$
Gap between	7,5 meters	No. Of levels	$3-(\mathrm{G}+2)$
Depth of platform	4 meters	Green percentage	20,39
Inhabitants	2,000		

SRACE@SEA

Option 1.b -

SRACE@SEA

Option 2.a -

Shape	Square	No. Of inhabitant per apartment	2
Size	90 meters	Per apartment unit size	$75 \mathrm{m2}$
Gap between	7,5 meters	No. Of levels	$2-(\mathrm{G}+1)$
Depth of platform	4 meters	Green percentage	30
Inhabitants	2,000		

Programs	Percentage distribution	FootPrint area-m2	$\begin{aligned} & \text { Gross Area } \\ & -m 2 \end{aligned}$	No. Of . Platform	Buill Typologies			No. of platiorm
Living Residential	39	38.929	77.857	11	Typology-1	Built \%	47.1	16
Business Commercial	11	11.445	22.891	3		Green \%	28	
Business Light Industrial	4	3.815	7.630	1	Typology-2	Built \%	34.6	3
Business Catering Industry	4	3.815	7.630	1	Trpolagr	Green \% Transport \% Built \%	$\begin{aligned} & 40,5 \\ & 24,9 \end{aligned}$	5
Public Building	8	7.630	15.260	2		Green \%	75,1	
Public Sports	6	6.083	6.083	1		Transport\%	24,9 Total	24
Public educational Institute	4	3.815	7.630	1		7	-.	
Public forest	6	6.083	6.083	1				
Public grass land	6	6.083	6.083	1				
Solar / w.w.t	12	12.166	12.166	2				
Total	100	93.781	169.263	24	Typelog 1	Typolog		molog - 3

SRACE@SEA

Option 2.b -

Assumption and discussion - for Living @ Sea

LOCATION	Rostock Den Haag Malmö Copenhagen Stockholm Dublin Tallinn		
PROGRAMS	Living Residential Living Community facilities Business Offices Business Light Industrial Business Research and Development Public Hotel Public Park and open space Public leisure Public Education Institutional Utilities Solar hub Utilities Others	Distribution percentages \%	32 1.5 5 5 8 1.5 11 15 9 8 4
TRANSPORT SYSTEM	Within City - Pedestrian, cycling and waterways Axis to city from mainland waterways	Total Primary channel width Secondary channel width	$\begin{aligned} & 100 \\ & 12 \mathrm{~m} \\ & 7.5 \mathrm{~m} \end{aligned}$

Number of platforms -

Option 1.a -

Shape	Square	No. Of inhabitant per apartment	3
Size	45 meters	Per apartment unit size	65 m 2
Gap between	7,5 meters	No. Of levels	$4-(\mathrm{G}+3)$
Depth of platform	4 meters	Green percentage	19.24
Inhabitants	50,000		

Programs	Percentage distribution	FootPrint area-m2	Gross Area $-m 2$	No. Of . Platform
Living Residential	32	541.667		256
Living Community facilities	1.5	21.667		11
Business offices	5	86.668		42
Business Light Industrial	5	86.668		42
Business Research and Development	8	130.002		63
Public Hotel	1.5	21.667		11
Public Park and open space	11	190.082		143
Public Leisure	15	260.004		178
Public educational Institute	9	151.669		73
Utility Solar	8	130.002		95
Utility Others	4	65.001		32
Total	100	1.685.097		949

Number of platforms -

Option 2.a -

Shape	Square	No. Of inhabitant per apartment		3	
Size	90 meters	Per apartment unit size		65 m 2	
Gap between	7,5 meters	No. Of levels		3-(G+2)	
Depth of platform	4 meters	Green percentage		24.87	
Inhabitants	50,000				
Programs		Percentage distribution	FootPrint area-m2	Gross Area $-m 2$	No. Of . Platform
Living Residential		32	541.667		84
Living Community facilities		1.5	21.667		4
Business offices		5	86.668		14
Business Light Industrial		5	86.668		14
Business Research and Development		t 8	130.002		21
Public Hotel		1.5	21.667		4
Public Park and open space		11	190.082		32
Public Leisure		15	260.004		44
Public educational Institute		9	151.669		24
Utility Solar		8	130.002		23
Utility Others		4	65.001		11
Total		al 100	1.685.097		275

SPACE@SEA

Input for simulation -

Configuration Concepts -

Overview -

- This document is an overview of potential configurations explored for the application of logistics at sea.
- These configurations were designed with consideration of the following criteria;
- Residential Proximity e.g to Green Space, Amenities, Public Functions and Parking Facilities.
- \% Green Space
- Floor Space Index
- Protection from motions (edge)
- Water Accessibility
- Platform Accessibility
- Spatial Integration (Functional relationships e.g Having a School next to a library \& Public Sports area).
- Zoning (Area character e.g Public Zone, Industrial Zone, Academic Zone).
- Public Space Distribution e.g central core vs distributed
- Boat Mooring Facilities
- Wind Protection (Tunnelling)

Typologies -

Category	Residential	Function	Low Density	
Shape	Courtyard Block	No of Storeys	3	
A width (m)	33.75	B width (m)	33.75	
C width (m)	10.90	D width (m)	10	
Ewidth (m)	13.75	Fwidth (m)	13.75	
G width (m)	7.5	H width (m)	3.25	
I width (m)	4.	GFA per block (m^{2})	2850	
Interior Void (m^{2})		Independent Platform	\checkmark	
		Distribution	$\left(m^{2}\right)$	(\%)
		Total Plot	2025	100
		Built	950	46
		Green	189	10
		Accessibility	886	44

Category	Residential	Function	Medium Density	
Shape	Courtyard Block	No of Storeys	4	
A width (m)	33.75	8 width (m)	33.75	
C width (m)	14.10	D width (m)	9	
Ewidth (m)	15.75	Fwidth (m)	15.75	
G width (m)	7.5	H width (m)	3.25	
I width (m)	4	GFA per block (m^{2})	3564	
Interior Void (m^{2})		Independent Platform	\checkmark	
		Distribution	$\left(\mathrm{m}^{2}\right)$	(\%)
		Total Plot	2025	100
		Built	891	44
		Green	248	12
		Accessibility	886	44

Category	Residential	Function	High Density	
Shape	LBlock	No of Storeys	5	
A width (m)	75	B width (m)	75	
C width (m)	17.20	D width (m)	10	
Ewidth (m)	13.75	Fwidth (m)	55	
G width (m)	7.5	H width (m)	5	
1 width (m)	4	GFA per block (m^{2})	8375	
Interior void (m^{2})		Independent Platform	\times	
		Distribution	$\left(m^{2}\right)$	(\%)
		Total Plot	5260	100
		Built	1675	32
		Green	1323	27
		Accessibility	21625	42

Category	Residential	Function	High Density	
Shape	Courtyard Block	No of Storey 5	5	
A width (m)	41.25	B width (m)	41.25	
C width (m)	17.20	D width (m)	12	
Ewidth (m)	17.25	Fwidth (m)	17.25	
G width (m)	5	H width (m)	75	
1 width (m)	4	GFA per block (m^{2})	7020	
Interior void (m^{2})		Independent Platform	\times	
		Distribution	$\left(\mathrm{m}^{2}\right)$	(\%)
		Total Plot	2940	100
		Built	2404	4^{8}
		Green	298	10
		Accessibility	1238	42

SRACE@SEA

Typologies -

Category	Business Catering Industry	Function	Hotel	
Shape	Courtyard Block.	No of 5toreys	3	
A width (m)	41.25	B width (m)	41.25	
C width (m)	10.90	D width (m)	12	
Ewidth (m)	17.25	Fwidth (m)	17.25	
G width (m)	5	H width (m)	7.5	
1 width (m)	4	GFA per block (m^{2})	4212	
Interior void (m^{2})		Independent Platform	*	
		Distribution	$\left(\mathrm{m}^{2}\right)$	(\%)
		Total Plot	2940	100
		Built	1404	48
		Green	298	10
		Accessibility	1238	42

Category	Public Education Institute	Function	Library \& Learning Centre	
Shape	Square	No of Storeys	4	
A width (m)	33.75	B width (m)	33.75	
Cwidth (m)	14.10	D width (m)	75	
Ewidth (m)	3.25	F width (m)	4	
Interior Void (m^{2}) *	108	GFA per block (m^{2})	4452	
Independent Platform	\checkmark			
		Distribution	$\left(\mathrm{m}^{2}\right)$	(\%)
		Total Plot	2025	100
		Built	1140	56
		Green	\bigcirc	0
		Accessibility	885	44

Category	Public Educational Institute	Function	Library \& Learning Centre	
Shape	Square	No of Storey	4	
A width (m)	41.25	B width (m)	41.25	
C width (m)	14.20	D width (m)	5	
E width (m)	725	Fwidth (m)	4	
Interior void (m^{2})	108	GFA per block (m^{2})	6700	
Independent Platform	*			
		Distribution	$\left(\mathrm{m}^{2}\right)$	(\%)
		Total Plot	2940	100
		Built	1702	58
		Green	-	-
		Accessibility	1238	42

SRACE@SEA

Typologies -

Category	Business Commercial	Function	Offices L Block	
Shape	L-Block	No of Storeys	4	
A width (m)	75	B width (m)	75	
Cwidth (m)	1420	D width (m)	10	
Ewidth (m)	13.75	Fwidth (m)	55	
G width (m)	7.5	H width (m)	5	
I width (m)	4	GFA per block (m^{2})	6700	
Interior Void		Independent Platform	*	
		Distribution	(m^{2})	(\%)
		Total Plot	5160	100
		Built	1675	32
		Green	1323	27
		Accessibility	2126.5	42

Category 5hape	Public Community Square	Function No of Storeys	Cultural Centre	
			4	
A width (m)	33.75	B width (m)	33.75	
Cwidth (m)	14.10	D width (m)	7.5	
Ewidth (m)	3.25	Fwidth (m)	4	
Interior Void $\left(\mathrm{m}^{2}\right) *$	36	GFA per block (m^{2})	4524	
Independent Platform	\checkmark			
		Distribution	$\left(\mathrm{m}^{2}\right)$	(\%)
		Total Plot	2025	100
		Built	1140	56
		Green	-	-
		Accessibility	885	44

Category	Public Community	Function	Cultural Centre	
Shape	Square	No of Storeys	4	
A width (m)	41.25	B width (m)	41.25	
C width (m)	14.20	D width (m)	5	
E width (m)	7.25	F width (m)	4	
Internal Void (m^{2}) *	36	GFA per block (m^{2})	6772	
Independent Platform	*			
		Distribution	$\left(\mathrm{m}^{2}\right)$	(\%)
		Total Plot	2940	100
		Built	1702	32
		Green	-	-
		Accessibility	1238	42

Category	Public Community	Function	Theatre	
5 hape	Square	No of 5toreys	4.	
A width (m)	41.25	B width (m)	41.25	
C width (m)	14.10	D width (m)	5	
Ewidth (m)	725	Fwidth (m)	4	
Interior Void (m^{2}) *	1200	GFA per block (m^{2})	5608	
Independent Platform	\times			
		Distribution	$\left(\mathrm{m}^{2}\right)$	(\%)
		Total Plot	2940	100
		Built	1702	32
		Green	\bigcirc	-
		Accessibility	1238	42

SRACE@SEA

Typologies -

Category	Public Community	Function	Theatre	
Shape	Square	No of Storeys	4	
A width (m)	33.75	B width (m)	33.75	
C width (m)	14.18	D width (m)	7.5	
Ewidth (m)	3.25	Fwidth (m)	4	
Interior Void (m^{2}) *	1200	GFA per block (m^{2})	3360	
Independent Platform	\checkmark			
		Distribution	$\left(\mathrm{m}^{2}\right)$	(\%)
		Total Plot	2025	100
		Built	1140	56
		Green	。	。
		Accessibility	885	44

Category	Business Light Industry	Function	Warehouse	
Shape	Square	No of Storeys	3	
A width (m)	33.75	B width (m)	33.75	
Cwidth (m)	10.90	D width (m)	7.5	
Ewidth (m)	3.25	F width (m)	4	
Interior Void (m^{2}) *	-	GFA per block ($\mathrm{m}^{\text {2 }}$)	3420	
Independent Platform	\checkmark			
		Distribution	$\left(\mathrm{m}^{2}\right)$	(\%)
		Total Plot	2025	100
		Built	1140	56
		Green	-	-
		Accessibility	985	44

Concept -1

Function	Plot Area $\left(\mathrm{m}^{2}\right)$
Green	28,533
Built	28,697
Accessibility	27,820
Utilities	12,150
	97,200
Total Floor Area:	104,344
Gross Floor Area (m²)	1.0734
Floor Space Index	29.35
	28.62
Green Space (\%)	29.52
Accessibility Space (\%)	12.5
Buil Space (\%)	
Utilities Space (\%)	

spACE@SEA

Function Distribution Concept -1

Function	Type	Percentage Distribution of GFA (\%)	Total Plot Area excluding accessibility (m^{2})	Total Building Plot Area (m^{2})	Gross Floor Area (m^{2})	No. of Platforms	No. of Level 5
Residential	Low Density	28,76	10,251	8,550	25,650	9	3
	Med Density	10.43	4.536	3.564	14,256	4	4
	High Density (L)	32,25	5,995	3,350	16,750	6	5
Business Commercial	Offices L-Black	9.80	5.995	3.350	13,400	E	4
Business Light Industry	Warehouse	5.00	2,280	2,280	6,840	2	3
Business Catering Industry	Hotel	3.08	1,404	1,404	4.212	2	3
Public Community Facilities	Cultural Centre	4.95	1,702	1,702	6,772	1	4
	Theatre	4.10	1,702	1,702	5,608	1	4
Public Educational Institute	Library and Learning Centre	4.90	1,702	1,702	6,700	1	4
	School	3.03	1,093	1,093	4,146	2	4
Public 5ports		592	8,100	-	-	4	\checkmark
Public Green Space		8.89	12,150	-	-	6	-
Utilities		8.89	12,150	\checkmark	-	6	-
TOTAL		100	69,080	28,697	104.344	48	-

Concept -2

Function	Plot Area $\left(\mathrm{m}^{2}\right)$
Green	28,533
Built	28,697
Accessibility	27,820
Utilities	12,150
	97,200
Total Floor Area:	104,344
Gross Floor Area (m$\left.{ }^{2}\right)$	1.0734
Floor Space Index	
	29.35
Green Space (\%)	28.62
Accessibility Space (\%)	29.52
Built Space (\%)	12.5
Utilities Space (\%)	

SPACE@SEA

Function Distribution Concept -2

Function	Type	Percentage Distribution of GFA (\%)	Total Plot Area excluding accessibility $\left(\mathrm{m}^{2}\right)$	Total Building Plot Area (m^{2})	Gross Floor Area (m²)	No. of Platforms	No. of Levels
Residential	Low Dersity	18.76	20,251	8,550	25,650	9	3
	Med Density	10.43	4,536	3.564	14,256	4	4
	High Density	12.25	5.995	3.350	16,750	6	5
Business Commercial	Offices	9.80	5.995	3,350	13,400	6	4
Business Light Industry	Warehouse	5.00	2,280	2,280	6,840	2	3
Business Catering Industry	Hotel	3.08	2,404	1,404	4,212	1	3
Public Community Facilities	Cultural Centre	4.95	2,702	1,702	5,772	1	4
	Theatre	4,10	1.702	1,702	5,608	1	4
Fublic Educational institute	Library and Learning Centre	4.90	1,702	1,702	6,700	1	4
	School	3.03	1,093	1,093	4.146	1	4
Public Sports		592	8,100	-	-	4	-
Public Green 5pace		8.89	12,150	-	-	6	-
Utilities		88.89	12,150	-	-	6	-
TOTAL		100	59,080	28,697	104,344	48	-

Concept -3

Function	Plot Area $\left(\mathrm{m}^{2}\right)$
Green	28,710
Built	28,556
Accessibility	27,784
Utilities	12,150
Total Floor Area:	97,200
Gross Floor Area $\left(\mathrm{m}^{2}\right)$	106,467
Floor Space Index	1.095
Green Space.(\%)	29.54
Accessibility Space (\%)	28.58
Built Space (\%)	29.37
Utilities Space (\%)	12.5

SRACE@SEA

Function Distribution Concept -3

Function	Type	Percentage Distribution of GFA (\%)	Total Plot Area excluding accessibility $\left(\mathrm{m}^{2}\right)$	Total Building Plot Area (m^{z})	Gross Floor Area (m^{2})	No. of Platformes	No. of Levels
Residential	Low Density	12.31	6,834	5,700	47,100	6.	3
	Med Density	17.97	7.973	6,273	24,948	7	4.
	High Density	12.06	5.995	3.350	16,750	6	5
Business Commercial	Offices	9,65	5.995	3,350	13,400	6	4
Business Lightindustry	Warehouse	4.92	2,280	2,280	5,84,	2	3
Business Catering Industry	Hotel	3.03	1,404	1,404	4,212	1	3
Public Community Facilities	cultural Centre	4.88	1,702	1,702	6,772	1	4
	Theatre	4.04	1,702	1,702	5,608	1	4
Public Educational Institute	Library and Learning Centre	4.82	1,702	1,702	6,700	I	4
	5 chool	2.99	2,093	1,093	4.346	1	4
Public Sports		5.83	8,100	\square	-	4	-
Public Green Space		8.75	12,250	-	-	5	-
Utilities		8.75	12,150	-	\checkmark	6	-
TOTAL		100	69,080	28,556	105,476	48	-

Concept -4

Function	Plot Area $\left(\mathrm{m}^{2}\right)$
Green	28,233
Built	28,697
Accessibility	28120
Utilities	12,150
Total Floor Area:	97,200
Gross Floor Area (m^{2})	104,344
Floor Space Index	1.074
Green Space. (\%)	29.04
Accessibility Space (\%)	29.52
Built Space (\%)	28.93
Utilities Space (\%)	12.5

SPACE@SEA

Function Distribution Concept -4

Function	Percentage Distribution of GFA (\%)	Function	Total Plot Area excluding accessibility (m^{2})	Total Building Plot Area (m^{2})	Gross Floor Area (m^{2})	No. of Platforms (45 $\times 4.5 \mathrm{~m}$)	No. of Levels
Residential	41.44	Low Density Housing	10,251	8,550	25,650	9	3
		Med Density Housing	4,536	3.564	14,256	4	4
		High Density Housing (L)	5.995	33350	16,750	6	5
Business Commercial	9.80	Offices	5.995	3,350	13,400	6	4
Business Light Industry	500	Warehouse	2,280	2,280	6,840	2	3
Business Catering industry	3.08	Hotel	2,402	10,404	4,212	1	3
Public Community Facilities	9.05	Cultural Centre	2,702	2,702	6,772	1	4
		Theatre	1,702	1,702	5,608	1	4.
Public Educational Institute	7.93	Liorary	1,702	1,702	5,700	1	4
		School	1,093	1,093	4,246	1	4
Rublic 5ports	5.92		8,100	-	\checkmark	4	-
Public Green Space	8.89		12,150	-	-	6	-
Litilies	8.89		12,150	-	-	6	-
TOTAL	100		69,080	28,697	104,334	48	-

Concept -5

Function	Plot Area $\left(\mathrm{m}^{2}\right)$
Green	28,978
Built	28,255
Accessibility	27,817
Utilities	12,150
Total Floor Area:	97,200
Gross Floor Area (m²)	101,132
Floor Space Index	1.04
Green Space.(\%)	29.82
Accessibility Space (\%)	28.62
Built Space (\%)	29.01
Utilities Space (\%)	12.5

Function Distribution Concept -5

Function	Type	Percentage Distribution of GFA (\%)	Total Plot Area excluding accessibility (m^{2})	Total Building PlotArea (m^{2})	Gross Floor Area (m^{2})	No. of Platforms	No. of Levels
Residential	Low Density	8.55	4,556	3,800	11,400	4	3
	Med Density	31.38	5,834	5,346	15,200	6.	4
	High Density (L)	12.54	5,995	3,350	16,750	6.	5
	High Density (C)	12.62	5,106	4,212	16,848	3	5
Business Commercial	Offices	10.03	5,995	3,350	13,400	5	4
Business Light industry	Warehouse	512	2,280	2,280	6,840	2	3
Business Catering industry	Hotel	3.25	1,404	1,404	4,212	7	3
Public Community Facilities	cultural Centre	3.39	1,140	1,140	4.524	1	4
	Theatre	252	1,140	1,140	3,360	1.	4.
Public Educational Institute	Library and Learning Centre	3.33	1,140	1,140	4,452	1	4.
	School	3.10	1,093	2,093	4,146	1	4
Public Sports		6.07	8,200	-	-	4	-
Public Green Space		9.10	12,150	-	-	6	-
Utilties		9.10	12,150	-	-	6	-
TOTAL		200	69,083	28,255	101,132	48	-

HORIFNM2 2020

SPACE@SEA

Appendix - $5 \quad$ City Design - Square shape platform

Table of Contents

1-45m Platform
1.1 - Typologies
1.2 - Function Distribution
1.3- Organisation of the city(land use maps)
1.4 - Visualizations
1.5 - Mockup model
1.6- Options for planning layout of blocks
1.7 - Planning layout of blocks

Typologies
Function Distribution
Residential Block
Other Blocks
2-90 m platform
2.1 - Function Distribution
2.2 - Organisation of the city(land use maps)

1-45m PLATFORM

1.1 - Typologies -

Type -1

			Residential
Category	Function	Residence and amenities	
Shape	38.50	No of Storeys	5
A width (\mathbf{m})	3.25	B width (\mathbf{m})	42.50
C width (\mathbf{m})	18.50	D width (\mathbf{m})	12
E width (\mathbf{m})	F width (\mathbf{m})	10	
G width (\mathbf{m})	4.50	H width (m)	17.50
I width (\mathbf{m})	GFA per block $\left(\mathbf{m}^{\mathbf{2}}\right)$ without terrace	5364	
Terrace green $\left(\mathbf{m}^{\mathbf{2})}\right.$	3	Independent Platform	\checkmark

1.1 - Typologies -

Type -2

1.1 - Typologies -

Type -3

Category	Mixed Use	Function	Business, Community and Educational	
Shape	Courtyard Block	No of Storeys	4	
A width (m)	38.50	B width (m)	42.50	
C width (m)	3.25	D width (m)	12	
E width (m)	18.50	F width (m)	10	
G width (m)	4.50	H width (m)	14.50	
I width (m)	3	GFA per block (m^{2}) without terrace	3950	
Terrace green (m^{2})	1414	Independent Platform	\checkmark	
		Distribution	$\left(\mathrm{m}^{2}\right)$	(\%)
		Total Plot	2025	100
		Built	1123	55.50
		Green	342	16
		Accessibility	560	28.50

1.1 - Typologies -

Type -4

Category	Mixed Use	Function	Business, Community and Educational	
Shape	Courtyard Block	No of Storeys	3	
A width (m)	38.50	B width (m)	42.50	
C width (m)	3.25	D width (m)	12	
E width (m)	18.50	F width (m)	10	
G width (m)	4.50	H width (m)	11.50	
I width (m)	3	GFA per block (m^{2}) without terrace	2536	
Terrace green (m^{2})	1414	Independent Platform	\checkmark	
		Distribution	$\left(\mathrm{m}^{2}\right)$	(\%)
		Total Plot	2025	100
		Built	1123	55.50
		Green	342	16
		Accessibility	560	28.50

1.1 - Typologies -

Type -5

Category	Mixed Use	Function	Business, Community and Educational	
Shape	Courtyard Block	No of Storeys	2	
A width (m)	38.50	B width (m)	42.50	
C width (m)	3.25	D width (m)	12	
E width (m)	18.50	F width (m)	10	
G width (m)	4.50	H width (m)	7.50	
I width (m)	3	GFA per block (m^{2}) without terrace	2536	
Terrace green (m^{2})	-	Independent Platform	\checkmark	
		Distribution	$\left(\mathrm{m}^{2}\right)$	(\%)
		Total Plot	2025	100
		Built	1123	55.50
		Green	342	16
		Accessibility	560	28.50

1.2 - Functional Distribution -

$\left.\begin{array}{|l|l|l|c|c|}\hline \text { Function } & \text { Type } & \begin{array}{l}\text { Percentage } \\ \text { Distribution of } \\ \text { GFA (\%) }\end{array} & \begin{array}{c}\text { Gross Floor Area } \\ \left(\mathbf{m}^{2}\right)\end{array} \\ \hline & \text { Residential } & \text { Med Density } & 44 & 65,290\end{array}\right]$
1.3 - Organization of the city (land-use map) -

Assigning the grid pattern

1.3 - Organization of the city (land-use map) -

Water transport network

SRACE@SEA

1.3 - Organization of the city (land-use map) -

Green Spaces

1.3-Organization of the city (land-use map) -

Residential

spACE@SEA

1.3 - Organization of the city (land-use map) -

Business Commercial

1.3 - Organization of the city (land-use map) -

Business Light Industry

spACE@SEA

1.3- Organization of the city (land-use map) -

Business Catering Industry

SPACE@SEA

1.3- Organization of the city (land-use map) -

Public Community Facilities

spACE@SEA

1.3- Organization of the city (land-use map) -

Public Educational Institute

spACE@sEA

1.3 - Organization of the city (land-use map) -

Public Sports - Indoor Spaces

spACE@sEA

1.3 - Organization of the city (land-use map) -

Public Amenities

1.3 - Organization of the city (land-use map) -

Utilities

1.3- Organization of the city (land-use map) -

Public Terrace Green

sPACE@SEA

1.3- Organization of the city (land-use map) -

Bridges connecting blocks at higher level.

spacemea

1.3- Organization of the city (land-use map) -

City layout

SRACE@SEA

1.4 - Visualizations -

Aerial view

SPACE@SEA

1.4 - Visualizations -

Canal view

1.4-Visualizations -

Center Courtyard

SPABE@SEA

1.4-Visualizations -

Roof terrace

SPACE@SEA

1.4 - Visualizations -

Roof terrace and bridge junction

SPACE@SEA

1.4 - Visualizations -

Dock and open space

Sमी

1.5 - Mock-up model -

spate ied

1.6 - Options for planning layout of blocks -

option 2.1

option 1.2

option 2.2

option 1.3

option 1.4

option 1.5

option 2.5

1.7 - Planning layout of blocks -

Typology -1

			Residential
Category	Function	Residence and amenities	
Shape	Courtyard Block	No of Storeys	5
A width (\mathbf{m})	38.50	B width (\mathbf{m})	42.50
C width (\mathbf{m})	3.25	D width (\mathbf{m})	13.25
E width (\mathbf{m})	16	F width (\mathbf{m})	11.25
G width (\mathbf{m})	4	H width (\mathbf{m})	18.10
I width (\mathbf{m})	GFA per block $\left(\mathbf{m}^{\mathbf{2}}\right)$ without terrace	5708	
Terrace green $\left(\mathbf{m}^{\mathbf{2})}\right.$	3.20	Independent Platform	\checkmark

1.7 - Planning layout of blocks -

Typology -2

Category	Mixed Use	Function	Business, Community and Educational	
Shape	Courtyard Block	No of Storeys	4	
A width (m)	38.50	B width (m)	42.50	
C width (m)	3.25	D width (m)	13.25	
E width (m)	16	F width (m)	11.25	
G width (m)	4	H width (m)	18.10	
I width (m)	3.20	GFA per block (m^{2}) without terrace	5708	
Terrace green (m^{2})	1500	Independent Platform	\checkmark	
		Distribution	$\left(\mathrm{m}^{2}\right)$	(\%)
		Total Plot	2025	100
		Built	1208	59.65
		Green	256	12.60
		Accessibility	560	27.25

1.7 - Planning layout of blocks -

Typology -3

Category	Mixed Use	Function	Business, Community and Educational	
Shape	Courtyard Block	No of Storeys	4	
A width (m)	38.50	B width (m)	42.50	
C width (m)	3.25	D width (m)	13.25	
E width (m)	16	F width (m)	11.25	
G width (m)	4	H width (m)	14.90	
I width (m)	3.20	GFA per block (m^{2}) without terrace	4208	
Terrace green (m^{2})	1500	Independent Platform	\checkmark	
		Distribution	$\left(\mathrm{m}^{2}\right)$	(\%)
		Total Plot	2025	100
		Built	1208	59.65
		Green	256	12.60
		Accessibility	560	27.25

1.7 - Planning layout of blocks -

Typology-4

Category	Mixed Use	Function	Business, Community and Educational	
Shape	Courtyard Block	No of Storeys	3	
A width (m)	38.50	B width (m)	42.50	
C width (m)	3.25	D width (m)	13.25	
E width (m)	16	F width (m)	11.25	
G width (m)	4	H width (m)	11.70	
I width (m)	3.20	GFA per block (m^{2}) without terrace	2708	
Terrace green (m²)	1500	Independent Platform	\checkmark	
		Distribution	$\left(\mathrm{m}^{2}\right)$	(\%)
		Total Plot	2025	100
		Built	1208	59.65
		Green	256	12.60
		Accessibility	560	27.25

1.7 - Planning layout of blocks -

Typology -5

Category	Mixed Use	Function	Business, Community and Educational	
Shape	Courtyard Block	No of Storeys	2	
A width (m)	38.50	B width (m)	42.50	
C width (m)	3.25	D width (m)	13.25	
E width (m)	16	F width (m)	11.25	
G width (m)	4	H width (m)	7.20	
I width (m)	3.20	GFA per block (m^{2}) without terrace	2708	
Terrace green (m^{2})	-	Independent Platform	\checkmark	
		Distribution	$\left(\mathrm{m}^{2}\right)$	(\%)
		Total Plot	2025	100
		Built	1208	59.65
		Green	256	12.60
		Accessibility	560	27.25

1.7 - Planning layout of blocks -

Funcional distribution -

Function	Type	Percentage Distribution of GFA (\%)	Gross Floor Area (m²)		Floor Type - Area ($\mathbf{m}^{\mathbf{2}}$)				
					-	-	\square	\square	
					1208	1500.25	1464.25	1756.25	2025
Residential	Med Density	44.5	69,342		4	43			
Business Commercial	Offices	9	13,833		4	6			
Business Light Industry	Warehouse	4.5	7,002				1	2	1
Business Catering Industry	Hotel	3.5	5,672		1	2	1		
Public Community Facilities	Cultural Centre	4.5	6,917		2	3			
	Theatre	3.5	5,928			2	2		
Public Educational Institute	Library and Learning Centre	5	7,208		1	4			
	School	4	6,001			4			
Public Sports		5	7,321				5		
Public Green Space		4	6,075						3
Public Terrace Green		-	-	43,507		29			
Public Amenities		4.5	6,809		2		3		
Utilities		8	13,199			2	3	1	2
TOTAL		100	155,307						

1.7 - Planning layout of blocks -

Residential Block -

1.7 - Planning layout of blocks -

Residential Block -

Layer - 1

Layer-2

SRACE@SEA

1.7 - Planning layout of blocks -

Residential Block -

Layer-3

Layer-4

Every floor layer has 14 units.
12 units - 74.50 m 2 each
2 units - 86 m 2 each
The 3 layouts can be mixed in different combinations to get different projections in the courtyard space.
1.7 - Planning layout of blocks -

Other Blocks -

Options for layer -1 (different functions)
1.7 - Planning layout of blocks -

Other Blocks -

Options for other layers - (different functions)

2-90m PLATFORM

SPACE@SEA

2.1 - Functional Distribution -

Function	Type	Percentage Distribution of GFA (\%)	Gross Floor Area (m²)		
	Residential	Med Density	49	68,462	
	Business Commercial	Offices	9	13,093	
	Business Light Industry	Warehouse	5	6,450	
	Business Catering Industry	Hotel	4	5,247	
	Public Community Facilities	Cultural Centre Theatre	9	11,959	
Public Educational Institute	Library and Learning Centre		8	11,263	
	School				
Public Green Space		4	5,458		
Public Peripheral Green		6	8,834		
	Public Amenities		6	8,100	
	Utilities		100	138,866	
			21,000		

2.2 - Organisation of the city (land-use map) -

City layout

SRACE@SEA
2.2-Organisation of the city (land-use map) -

Assigning the grid pattern

SRACE@SEA

2.2-Organisation of the city (land-use map) -

Water transport network

SRACE@SEA

2.2-Organisation of the city (land-use map) -

Accessibility and Dock

SPADE@SEA

2.2 - Organisation of the city (land-use map) -

Public Peripheral Green

2.2 - Organisation of the city (land-use map) -

Public Green Space

2.2-Organisation of the city (land-use map) -

Residential

SRACE@SEA

2.2 - Organisation of the city (land-use map) -

Business Commercial

2.2 - Organisation of the city (land-use map) -

Business Light Industry

2.2 - Organisation of the city (land-use map) -

Business Catering Industry

2.2 - Organisation of the city (land-use map) -

Public Community Facilities

2.2 - Organisation of the city (land-use map) -

Public Educational Institute

2.2 - Organisation of the city (land-use map) -

Public Amenities

2.2-Organisation of the city (land-use map) -

Utilities

SRACE@SEA
 ,ACE@SEA

2.2-Organisation of the city (land-use map) -

City Layout

SRACE@SEA

THE FRAME WORK PPGBEAMME for Hessalch and invovation
HORIFNM 2020

SPACE@SEA

Appendix-6

Energy hub@Sea

Table of contents

Concept 1 : Triangular Based Offshore Platform
Concept 2: Triangular Based Floating Platform
Concept 3 : Square Based Offshore Platform
Concept 4: Square Based Floating Platform

1.1 Concept 1\&3 :

Offshore Platform

Create a concept for a new Offshore Platform, based on the document (Space@Sea - WP6, List of requirements of the O\&M hub), for two different scenarios:

- North Sea
- Mediterranean Sea

The requirements are compared with regulations of residential functions on land and with the preferences of offshore workers collected during interviews (D7.1 report).
Based on regulations and offshore worker's preferences, a new design brief is proposed.

1.1 Concept 1\&3 :

Offshore Platform

Requirements are reviewed according to the information included in the following documents:

- "Space@Sea - WP6, List of requirements of the O\&M hub".
- Bouwbesluit (Dutch Building Code)for the comparison with regulations of residential functions on land.
- D7.1 report, for understanding offshore worker's wishes.

1.2 Concept 2\&4 :

Floating Platform

Create a concept for a new Floating Platform, based on the documents and interviews, for different scenarios.

Many of the interviewees (offshore workers) expressed the preference to increase the living space and also the possibility to receive family visits.
Therefore, the new requirements include a higher number of people and more living space per person. Flats of $35 \mathrm{~m}^{2}$ circa are envisioned, which could accommodate 1 or 2 people. Additionally, more space for outdoor activities and for leisure facilities is included in the overview.

1.2 Concept 2\&4 :

Floating Platform

Requirements are reviewed according to the information included in the following documents:

- "Space@Sea - WP6, List of requirements of the O\&M hub"
- Bouwbesluit (Dutch Building Code)for the comparison with regulations of residential functions on land
- D7.1 report, for understanding offshore worker's wishes

2. References:

O\&M HUB Design

According to the document "List of requirements of the O\&M hub", the Bouwbesluit (Dutch Building Code) and the D7.1 report, for understanding offshore worker's wishes the building consists of the following parts:

- Basic Module
- Storage hall and quay
- Accommodation building
- Columns

The platform shape is triangular, with equal sides. Each side is 50 m .
On top of the platform, a building is constructed. Around the building, a 4 m wide quay is present. The side of the building on top of the platform is circa 36 m and it is footprint is approximately 566sqm.

2. References:

O\&M HUB Design

Building Example

2. References:

O\&M HUB Design

Figure 1, from left to right: North Sea, Baltic Sea and Mediterranean Sea version

2. References:

O\&M HUB Design

Depending on the context where the platform will be built, different configurations are possible.

- Configuration \#1 has 2 floors
- Configuration \#2 and \#3 have 3 and 4 floors
- The additional floor space created in configuration \#2 and \#3 allow more room for functions. The 3th design has an integration of green elements

3. Concept 1

Offshore Triangular Based Platform

- 3.1: Program of Demands
- 3.2: Initial compositional scheme
- 3.3: Concept 1.A Mediterranean Sea
- 3.4: Concept 1.B North Sea

3. Concept 1:

Offshore Platforms

Program of Demands

Functional requirements for accommodation building

- The document "List of requirements of the O\&M hub", is referred to a platform that provides enough space (rooms and services) for 32 workers

3. Concept 1:

Offshore Platforms

Program of demands

	m^{2} (NFA)	Description
Single rooms	400	min. $12 \mathrm{~m}^{2}$ each - windows to the outside - bath with toilet and shower - desk, chairs, wardrobe - heating, air condition, ventilation
Corridors	200	no daylight necessary - heating, air condition, ventilation
Kitchen + canteen	150	kitchen with stoves, ovens, air exhaust systems, refrigerators, freezers, boards, dishwashers - canteen for 32 persons with counters, heated wells, dishwashers, cupboards, windows to outside - sanitary rooms - heating, air condition, ventilation
Food storage	100	storage rooms for food with a capacity of 30 days - refrigeration chamber with a capacity of 30 days - house service room with storage of cleaning agents and other consumables, vacuum cleaner - laundry with washing machines, tumble dryers, linen cupboards, with ventilation
Offices		
Conference	20	25
Health room	15	gym etc.
Social rooms	30	940
Total, accommodation building		

3.2 Concept 1

Initial compositional scheme

The concept of the floorplans started from the study of a triangular platform with sides of $(50 \times 50 \times 50) \mathrm{m}$.
The plans have been studied to answer the requirements mentioned in the List of requirements of the O\&M hub.

Phase 1

SRACE@SEA

3.3 Concept 1.A:

Mediterranean Sea

Storage, hall and quay

Area index

2 doors and $3 \times 3 \mathrm{~m}$ hall door on each side
Turbines stock area
47 sqm
Parking, loading area
82 sqm
Transport paths
141 sqm
Container storage area
33 sqm
Locker room
22 sqm
Office
11 sqm
Workshop
Hazardous materials storage
11 sqm
$8,5 \mathrm{sqm}$
Waste storage tank
$8,5 \mathrm{sqm}$
Water distillation reserve
49 sqm
Waste water treatment
Heating system
49 sqm
10 sqm
Warm water
10 sqm
Diesel Generator station
10 sqm
Ventilation System
5 sqm
Diesel storage 10 sqm
Electric system 5 sqm

3.3 Concept 1.A:

Mediterranean Sea

Plan Level 1

Storage, restaurant, offices

Area index

Reserve area
Kitchen
95 sqm

Canteen
Food storage and house service
Office 1
Office 2
Office 3

127 sqm
92 sqm
25 sqm
28 sqm
27 sqm

3.3 Concept 1.A:

Mediterranean Sea

Plan Level 2

Bedrooms,conference,health room

Area index Accommodation for 19 people

Bedrooms x 19 (12 sqm each)
228 sqm
Conference Room
33 sqm
Health Room
15 sqm

SPACE@SEA

3.3 Concept 1.A:

Mediterranean Sea

Plan Level 3

Bedrooms, common areas

Area index Accommodation for 14 people

Bedrooms x 19 (12 sqm each)
168 sqm
Gym
60 sqm
Common space

SPACE@SEA

3.3 Concept 1.A:

Mediterranean Sea

Plan Level 4
Rooftop

Roof

SRACE@SEA

3.4 Concept 1.B:

North Sea

Storage, hall and quay

Area index

2 doors and $3 \times 3 \mathrm{~m}$ hall door on each side
Turbines stock area
47 sqm
Parking, loading area
82 sqm
Transport paths
141 sqm
Container storage area
33 sqm
Locker room
22 sqm
Office
11 sqm
Workshop
Hazardous materials storage
11 sqm
Waste storage tank
$8,5 \mathrm{sqm}$
Water distillation reserve
$8,5 \mathrm{sqm}$
Waste water treatment
44 sqm
44 sqm
Heating system
10 sqm
Warm water
10 sqm
Diesel Generator station
10 sqm
Ventilation System
5 sqm
Diesel storage
10 sqm
Electric system
5 sqm

3.4 Concept 1.B:

North Sea

Plan Level 1

Storage, restaurant, offices

Area index

Reserve area
95 sqm
Kitchen
52 sqm
Canteen
Food storage and house service
Office 1
Office 2
Office 3
27 sqm

3.4 Concept 1.B:

North Sea

Plan Level 2

Bedrooms,conference,health room

Area index Accommodation for 19 people

Bedrooms (19 of 12 sqm each)	228 sqm
Conference Room	33 sqm
Health Room	14 sqm

SPACE@SEA

3.4 Concept 1.B:

North Sea

SRACE@SEA

4. Concept 2

Triangular Based Floating Platform

- 4.1: Program of Demands
- 4.2: Initial compositional scheme
- 4.3: Concept 2.A Triangular Based Floating Tower
- 4.4: Concept 2.B Triangular Based Floating City

4.1 Concept 2:

Program of Demands

Program of demands

Functional requirements for accommodation building based on:

- The interview (D7.1 report) at offshore workers, that expressed the preference to increase the living space and also the possibility to receive family visits
- Necessity of 32 apartments at list
- The Bouwbesluit (Dutch Building Code).

4.1 Concept 2:

Program of Demands

	m^{2} (NFA)	Description
Mini Flats	1120	$35 \mathrm{~m}^{2}$ each - windows to the outside - bathroom with toilet and shower - separation between living and sleeping area - kitchen - heating, air condition, ventilation
Corridors/Stairs	480	no daylight necessary - heating, air condition, ventilation
Kitchen + canteen	240	kitchen with stoves, ovens, air exhaust systems, refrigerators, freezers, boards, dishwashers - canteen for 30 persons with counters, heated wells, dishwashers, cupboards, windows to outside - sanitary rooms - heating, air condition, ventilation
Food storage (Small Supermarket)	130	storage rooms for food with a capacity of 30 days - house service room - laundry with washing machines
Social Room	176	fitness, sauna/ showers, game room (pool, table, lounge)
Offices	64	
Conference	40	
Health room	15	
Outdoor space	250-500 (depending on the platform)	Green (180-360 m², based on $9 \mathrm{~m}^{2}$ p.p.) with plants and bushes, should be accessible most of the time and should be safe, accessible without addition safety measures.
Total, accommodation building	940	

4.2 Concept 2

Initial compositional scheme

As for the ($50 \times 50 \times 50$) m triangular offshore building schemes, the same studies been made for the floating platform systems.
The projects are designed to satisfy a program of demands based on the interview at offshore workers, that expressed the preference to increase the living space and also the possibility to receive family visits.

SRACECEA

4.3 Concept 2.A:

Triangular Based Floating Tower

This floating tower is designed to accommodate a minimum of 32 families to a maximum of 36 families. The first two levels are for common activities and facilities, above these levels there are 6 other levels, which are equipped with 6 apartments of 37 sqm each.

4.3 Concept 2.A:

Triangular Based Floating Tower

This floating tower is designed to accommodate a minimum of 32 families to a maximum of 36 families. The first two levels are for common activities and facilities, above these levels there are 6 other levels, which are equipped with 6 apartments of 37 sqm each.

sRACE@SEA

4.3 Concept 2.A:

Floating Tower

Storage, Restaurant, Outdoor Green

Area index

Outdoor Common Green	59 sqm
Kitchen	54 sqm
Canteen	168 sqm
Food storage and Supermarket	130 sqm
Toilet	20 sqm
Laundry	7 sqm
Refrigerator	8 sqm

4.3 Concept 2.A:

Floating Tower

Plan Level 1

Offices, social, outdoor space

Area index

Outdoor Space
Social (game + lounge)
Fitness
Conference
Heath Room
Office 1
Office 2
Office 3

84 sqm
76 sqm
63 sqm
40 sqm
15 sqm
20 sqm
20 sqm
24 sqm

4.3 Concept 2.A:

Floating Tower

Plan Level 2 to level 8

Apartments

Area index

Apartments (6/floor 37 sqm each)
Private Garden (1/ap. 15 sqm each)
222 sqm

SPACE@SEA

4.3 Concept 2.A:

Floating Tower

Section AA

4.3 Concept 2.A:

Floating Tower

Section BB

SPACE@SEA

4.4 Concept 2.B:

Triangular Based Floating city

PLANAR SOLUTION
Study started at the triangular module platform of (50X50X50)m

Waterstudio.NL
SPACE@SEA

4.4 Concept 2.B:

Compositive Schemes

BASIC MODULES
The solutions are made by two main functions: accommodation and facilities. The two modules can combined into different configurations

Accommodation

Facilities

SPACE@SEA

4.4 Concept 2.B:

INITIAL CONFIGURATION

Each solution is made to answer the requirements of 32 families.

Layout 1

Layout 3

Layout 2

Layout 4

SRACE@SEA

4.4 Concept 2.B1:

32 Apartments Floating City

SCHEME 1: 3 accommodation blocks (11 apartments/platform) + 2 facility blocks

Basic Scheme

Side View

Top View

SRACE@SEA

4.4 Concept 2.B1:

32 Apartments Floating City

SCHEME 1: 3 accommodation blocks (11 apartments/platform) + 2 facility blocks

Master plan

4.4 Concept 2.B2:

32 Apartments Floating City

SCHEME 2: 4 accommodation blocks (8 apartments/platform) + 2 facility blocks

4.4 Concept 2.B2:

32 Apartments Floating City

SCHEME 2: 4 accommodation blocks (8 apartments/platform) + 2 facility blocks

Master plan

4.4 Concept 2.B3:

32 Apartments Floating City

SCHEME 3: 4 accommodation blocks (8 apartments/platform) + 1 facility block

Basic Scheme

Side View

Top View

SRACE@SEA

4.4 Concept 2.B3:

32 Apartments Floating City

SCHEME 3: 4 accommodation blocks (8 apartments/platform) + 1 facility block

Master plan

4.4 Concept 2.B4:

32 Apartments Floating City

SCHEME 4: 1 accommodation blocks (32 apartments/platform) + 1 facility block

Basic Scheme

Side View

Top View

4.4 Concept 2.B4:

32 Apartments Floating City

SCHEME 4: 1 accommodation blocks (32 apartments/platform) + 1 facility block

Master plan

4.4 Concept 2.B5:

32 Apartments Floating City

SCHEME 5: 3 accommodation blocks (12 apartments/platform) + 1 facility block

Basic Scheme

Side View

Top View

SRACE@SEA

4.4 Concept 2.B5:

32 Apartments Floating City

SCHEME 5: 3 accommodation blocks (12 apartments/platform) + 1 facility block

Master plan

4.4 Concept 2.B5:

32 Apartments Floating City

Plan accommodations

Apartments

Area index

Apartments (9/block of 35 sqm)
315 sqm
Apartments (3/block of 50 sqm)

4.4 Concept 2.B5:

32 Apartments Floating City

Plan facilities

Offices, social, outdoor space

Area index	
Outdoor Space	84 sqm
Social (game + lounge)	76 sqm
Fitness	63 sqm
Conference	40 sqm
Heath Room	15 sqm
Office 1	20 sqm
Office 2	20 sqm
Office 3	24 sqm

4.4 Concept 2.B5:

32 Apartments Floating City

Side view

SRACE@SEA

4.4 Concept 2.B5:

32 Apartments Floating City

IMPRESSION
View From the green area

5. Concept 3 :

Offshore Square Based Platform

- 5.1: Program of Demands
- 5.2: Initial compositional scheme
- 5.3: Concept 1.A Mediterranean Sea Option
- 5.4: Concept 1.B North Sea Option

5. Concept 1:

Offshore Platforms

Program of demands

Functional requirements for accommodation building

- In the document "List of requirements of the O\&M hub", a list of requirements that includes space for 32 people is proposed.

5.1 Concept 1:

Program of demands

Program of demands	m^{2} (NFA)	Description
Single rooms	400	min. $12 \mathrm{~m}^{2}$ each - windows to the outside - bath with toilet and shower - desk, chairs, wardrobe - heating, air condition, ventilation
Corridors	200	no daylight necessary - heating, air condition, ventilation
Kitchen + canteen	150	kitchen with stoves, ovens, air exhaust systems, refrigerators, freezers, boards, dishwashers - canteen for 32 persons with counters, heated wells, dishwashers, cupboards, windows to outside - sanitary rooms - heating, air condition, ventilation
Food storage	100	storage rooms for food with a capacity of 30 days - refrigeration chamber with a capacity of 30 days - house service room with storage of cleaning agents and other consumables, vacuum cleaner - laundry with washing machines, tumble dryers, linen cupboards, with ventilation
Offices	20	
Conference	25	
Health room	15	30
Social rooms	940	gym etc.
Total, accommodation building		

5.2 Concept 3:

Initial compositional scheme

This concept is based on a square shaped floating platform, L: 50.
The plans have been studied to answer to the requirements mentioned in the program of demands.

5.3 Concept 3.A:

Mediterranean Sea

Plan Level 0
Storage, hall and quay

Area index

2 doors and $3 \times 3 \mathrm{~m}$ hall door on each side

Turbines stock area	47 sqm
Parking, loading area	82 sqm
Container storage area	33 sqm
Locker room	38 sqm
Office	38 sqm
Toilet	38 sqm
Reserve Area	140 sqm
Workshop	38 sqm
Hazardous materials storage	20 sqm
Waste storage tank	20 sqm
Water distillation reserve	77 sqm
Waste water treatment	77 sqm
Heating system	20 sqm
Warm water	20 sqm
Diesel Generator station	20 sqm
Ventilation System	20 sqm
Diesel storage	20 sqm

5.3 Concept 3.A:

Mediterranean Sea

Plan Level 1

Storage, restaurant, offices accommodation

Area index

Rooms 12 sqm $\times \mathrm{n} .32$	384	sqm
Kitchen	75	sqm
Canteen + Common Area	270	sqm
Food storage and house service	130	sqm
Office 22 sqm $\times \mathrm{n} .3$	66	sqm
Toilet	23	sqm
Relax area	130	sqm
Fitness	60	sqm
Conference	60	sqm

5.3 Concept 3.A:

Mediterranean Sea
Plan Level 2
Rooftop

SPACE@SEA

5.4 Concept 3.B:

North Sea

Plan Level 1

Storage, hall and quay, facilities

Area index

2 doors and $3 \times 3 \mathrm{~m}$ hall door on each side

Turbines stock area	38	sqm
Parking, loading area	150	sqm
Container storage area	88	sqm
Locker room	37	sqm
Office	10	sqm
Workshop	10	sqm
Hazardous materials storage	11	sqm
Waste storage tank	11	sqm
Water distillation reserve	38	sqm
Waste water treatment	38	sqm
Heating system	10	sqm
Warm water	10	sqm
Diesel Generator station	10	sqm
Ventilation System	5	sqm
Diesel storage	10	sqm
Electric system	5	sqm

5.4 Concept 3.B:

North Sea

Plan Level 1

Area index
Rooms 18 (19sqm/ap)
342 sqm

5.4 Concept 3.B:

North Sea

Plan Level 2

Rooftop

6. Concept 4:

Square Based Floating Platform

- 6.1: Program of Demands
- 6.2: Initial compositional scheme
- 6.3: Concept 4.A Square Based Floating Tower
- 6.4: Concept 4.B Square Based Apartments Floating City

6.1 Concept 4:

Program of demands

Functional requirements for accommodation building based on:

- The interview (D7.1 report) at offshore workers, that expressed the preference to increase the living space and also the possibility to receive family visits
- Necessity of 32 apartments at list
- The Bouwbesluit (Dutch Building Code).

6.1 Concept 4:

Program of demands

	m^{2} (NFA)	Description
Mini Flats	1120	~ $35 \mathrm{~m}^{2}$ each - windows to the outside - bathroom with toilet and shower - separation between living and sleeping area - kitchen - heating, air condition, ventilation
Corridors/Stairs	480	no daylight necessary - heating, air condition, ventilation
Kitchen + canteen	240	kitchen with stoves, ovens, air exhaust systems, refrigerators, freezers, boards, dishwashers - canteen for 30 persons with counters, heated wells, dishwashers, cupboards, windows to outside - sanitary rooms - heating, air condition, ventilation
Food storage (Small Supermarket)	130	storage rooms for food with a capacity of 30 days - house service room - laundry with washing machines
Social Room	176	fitness, sauna/ showers, game room (pool, table, lounge)
Offices	64	
Conference	40	
Health room	15	
Outdoor space	250-500 (depending on the platform)	Green (180-360 m^{2}, based on $9 \mathrm{~m}^{2}$ p.p.) with plants and bushes, should be accessible most of the time and should be safe, accessible without addition safety measures.
Total, accommodation building	940	

6.2 Concept 4:

Initial compositional scheme

This concept is based on a square shaped Floating platform, L: 50. Inside of it the plans are designed to satisfy a program of demand based on the interview at offshore workers, that expressed the preference to increase the living space and also the possibility to receive family visits.

Phase 1

6.3 Concept 4.A:

Square Based Floating Tower

This floating tower is designed to accommodate 36 families. The first level is for common activities and facilities, the other two levels, are each provided with 18 apartments of 40 sqm per apartment.

6.3 Concept 4.A:

Square Based Floating Tower

Each apartment is provided with its own green exterior area.

6.3 Concept 4.A:

Square Based Floating Tower

Plan Level 0

Storage, Restaurant, Outdoor Green

| Area index | | |
| :--- | :--- | :--- | :--- |
| Indoor Common Area | 330 | sqm |
| Outdoor Common Area | 470 | sqm |
| Kitchen | 54 | sqm |
| Canteen | 168 | sqm |
| Food storage and Supermarket | 130 | sqm |
| Toilet | 20 | sqm |
| Laundry | 7 | sqm |
| Refrigerator | 8 | sqm |
| Office room | 64 | sqm |
| Conference room | 40 | sqm |
| Health room | 15 | sqm |
| Social room | 176 | sqm |
| Fitness area | 52 | sqm |

Waterstudio.NL

6.3 Concept 4.A:

Square Based Floating Tower

Plan Level 1 and 2

Apartments and outdoor space

Area index

Apartments (18 of 40sqm each)

Waterstudio.NL

6.4 Concept 4.B:

Compositive schemes

BASIC MODULES
The solutions are made by two main functions: accommodation and facilities. The two modules can be combined in different configurations.

Accommodation

Facilities

SRACE@SEA

6.4 Concept 4.B1:

32 Apartments Floating City

SCHEME 1: 2 accommodation blocks (18 apartments/platform) + 1 facility block

Basic Scheme

Side View

Top View

6.4 Concept 4.B1:

32 Apartments Floating City

SCHEME 1: 2 accommodation blocks (18 apartments/platform) + 1 facility block
Master plan

Waterstudio.NL

SRACE@SEA

6.4 Concept 4.B1:

32 Apartments Floating City

Plan Accommodations

Apartments and outdoor space

Area index

Waterstudio.NL

6.4 Concept 4.B1:

32 Apartments Floating City

Plan Facilities

Storage, Restaurant, Outdoor Green

Area index			
Outdoor Common Green	138	sqm	
Kitchen	54	sqm	
Canteen	168	sqm	
Food storage and Supermarket	130	sqm	
Toilet	20	sqm	
Laundry	7	sqm	
Refrigerator	8	sqm	
Office room	64	sqm	
Conference room	40	sqm	
Health room	15	sqm	
Social room	176	sqm	
Fitness area	52	sqm	

Waterstudio.NL

6.4 Concept 4.B1:

32 Apartments Floating City

IMPRESSION
Aerial View

6.4 Concept 4.B1:

32 Apartments Floating City

IMPRESSION
View From the green area

Appendix 7 - Performance Requirements

The following performance requirements was determined by findings of task 7.2: Research current and future inhabitants and other stakeholders. These requirements shall be met in the final design outcome of this work task.

Comfort

- Increase of the platform's stability.
- Minimisation of industrial noises and odours in housing spaces.
- Soundproof rest areas.
- Filter for odours or airlocks including lockers for working clothes.

Availability

- Provision of passenger traffic back to the mainland in a fast, frequent, safe, cost efficient and unproblematic way. If that can be achieved, the distance to the mainland becomes irrelevant.
- Mail and delivery services inside of the platform and from the outside world.

Working Conditions

- Same working hours as on the mainland.
- Work-life balance

Design of residential space

- Assurance of privacy.
- Sizes of flats should equal flats' sizes onshore. Size of flat is depending on the size of the household. In relation to the household size, number and size of rooms can be determined.
- Private and spacious bathroom including a shower and/or a bathtub as well as an own kitchen with a full range of kitchen equipment.
- Different options concerning the design of the living space (e.g. flooring material) and individual furniture.
- Large windows in living quarters.
- Elaborate and appealing design / self-influence on the design
- Enhancing the feeling of being at home.

Communication

- Provision of high-powered, safe and cost-efficient internet access for the inhabitants' use.

Design of Outdoor Areas

- Adequate amount of space for outdoor activity.
- Extensive green area (a park or a small forest) including animals.

Barbecue area.

Social life

- Adequate amount of people to increase the probability to make friends, but also to be able to avoid each other. Minimal size of a group: approximately 20 families.
- Recruitment not only in relation to occupational competence, but also with regard to social and intercultural abilities.
- Fostering private contacts.
- Possibility of bringing the family to the island.
- Permission for taking pets to the island.
- Visits from the mainland.
- Work opportunities for the significant other (dual career concept).
- Childcare.

Leisure Facilities

- Many and appealing leisure facilities for people of all ages.
- Sport: fitness rooms with equipment adequate in amount and quality, sports fields and/or sports halls for all sorts of ball games, in- and outdoors swimming pool.
- Wellness- and sauna area.
- Restaurants, pubs, bars, clubs.
- Cultural offers: cinemas, theatres, concerts.
- Possibilities for further education and a variety of courses (language classes, music lessons, dance classes etc.).

Shopping Facilities

- Food shopping (same kind of shopping like onshore, large and many offers, fresh products).
- Shopping (clothes, everyday needs).
- Online shopping: assurance of delivery services.

Safety

- Assurance of health care.
- Examination of the adherence to security rules.
- Examination of safety drills' quality.

Waste and Electricity Generation

- Ecologically friendly waste disposal.
- Environmentally friendly power generation: wind power, water turbines or solar power.
- Environmentally friendly water treatment and wastewater treatment.
- Decent thermal insulation.
- Minimisation of private electric power consumption.

Appendix 8 - Technical, comfort \& safety requirements

The following requirements were determined from the findings of Task 7.3: technical comfort and safety requirements. These requirements shall be met in the final design outcome of this work task.

General

- Utilisation of space (building area, parking area, public area, green area, etc.)
- Topography (size, shape and levels, etc.)
- Accessibility and boundaries (space and width for roads, walls, fences, etc.)
- Resource demands (water, energy, food)
- Adaptability (Incorporation of elements to assist with future expansion
- Practicability (Dimensions of rooms, ceiling heights, accessibility etc.)

External Environment and Acts of Nature

- Protection against external environment: (outdoor areas, vehicular access, waste, hazardous substances, etc.)
- Protection against acts of nature, in particular extreme weather (strong wind, torrential downpour, flooding, storm surge, etc.)

Safety

- Structural stability (Foundations, structure, interior finishes, live and dead loads etc.)
- Structural safety (personal, material, material falls, falls from structures, collision with structures, lightning, etc.)
- Fire safety (load bearing capacity and stability in case of fire and explosion, extinguishing, escape, rescue, etc.)
- Layouts and routes (entrance, communication routes, rooms, storage, building components, dock, etc.)
- Construction \& maintenance safety. (On site hazard control, access for machinery tools, materials, etc.)

Environment, Health \& Comfort

- Air quality (ventilation, etc.)
- Indoor thermal climate (conduction, radiation, etc.)
- Sound and vibrations (soundproofing, room acoustics, noise from technical installations, etc.)
- Natural lighting and views (lighting levels, visual amenity, etc.)
- Weather resistance (Moisture ingress and vapour diffusion).
- Wet space (moisture in the buildings, rooms with water installation, surface water, precipitation, etc.)

Utility Space

- Energy supply and efficiency
- Heating and/or cooling installation
- Indoor water and drainage installation
- Outdoor water supply and sewerage installation
- Lifting equipment
- Service maintenance and accessibility (hoisting equipment, window cleaning access).

Appendix 9- Intact Stability Calculation - GHS Report

WEIGHT and DISPLACEMENT STATUS Baseline draft: 7.279 @ Origin Trim: Aft 0.81 deg., Heel: Stbd 1.10 deg.					
Part-------------------------Weight (MT)----LCG----TCG-----VCG					
Outdoor (Ground floor)	1.97	$22.500 f$	0.000	11.900	
Level 4 Interior Outfitti	25.52	$22.500 f$	0.000	27.545	
Level 1, 2 \& 3 Apartment	36.37	$22.500 f$	0.000	18.697	
Technical Equipment \& Out	1,917.35	$22.500 f$	0.000	2.100	
Hull (Connectors)	4,924.80	$22.500 f$	0.000	7.517	
Hull (Technical)	2,748.00	$22.500 f$	0.000	1.040	
Bulkwark	35.05	$22.500 f$	0.000	10.497	
Stairs \& Lifts	201.87	$22.500 f$	0.150 s	18.485	
(Level0) Walls	204.35	$22.552 f$	0.000	11.900	
Level 1 (Floor)	635.87	$22.490 f$	0.000	14.030	
(Level1) Walls	252.99	$22.501 f$	0.000	15.500	
Level 1 (Windows)	141.85	$22.533 f$	0.000	15.500	
Level 2 (Floor)	674.02	$21.538 f$	1.314s	17.230	
(Level2) Walls	252.63	$22.681 f$	0.000	18.701	
Level 2 (Windows)	165.06	$16.776 f$	7.754s	18.966	
Level 3 (Floor)	674.02	$21.196 f$	0.953 s	20.430	
(Level3) Walls	251.90	$22.545 f$	0.046p	21.901	
Level 3 (Windows)	170.21	$14.886 f$	5.603s	22.160	
Level 4 (Floor)	635.70	$22.510 f$	0.000	23.630	
Level 4 (Walls)	7.94	$22.500 f$	0.000	27.331	
Level 4 (Windows)	474.54	$22.500 f$	0.000	27.545	
PAX	19.80	$22.500 f$	0.000	18.500	
Total Weight-------->	14,451. 81	$22.244 f$	0.262 s	9.555	
SpGr	-Displ(MT	LCB	TCB	- VCB	RefHt
HULL 1.025	14,451.82	$22.159 f$	0.464 s	3.488	-7.277
Righting Arms: External Arms: Residual Righting Arms:		0.000	0.087 s		
		0.000	0.087 s		
		0.000	0.000s		
Distances in METERS.					

A X I S 0							
RESIDUAL RIGHTING ARMS vs HEEL ANGLE							
LCG $=22.244 \mathrm{f}$ TCG $=0.262 \mathrm{~s}$ VCG $=9.555$							
Origin	Degre	es of	Displacement	Residu	1 Arms	Res	Flood Pt
Depth-	Trim	-Heel	--Weight (MT)	-in Trim	-in Hee	> Area	-Height
7.278	0.81 a	0.82 s	14,452	0.000	-0.087	0.0000	0.713(5)
7.277	0.81 a	1.10s	14,452	0.000	0.000	-0.0002	0.633(5)
7.269	0.81 a	2.89 s	14,452	0.000	0.569	0.0087	-0.000(6)
7.255	0.80 a	4.69s	14,452	0.000	1.146	0.0357	50\% DeckImm
7.238	0.80 a	6.10 s	14,452	0.000	1.598	0.0693	9.593(2)
7.170	0.84 a	11.10s	14,452	0.000	3.215	0.2791	7.583(2)
7.131	0.89 a	16.10s	14,452	0.000	4.677	0.6246	5.435(2)
7.022	1.05a	21.10s	14,452	0.000	6.002	1.0916	3.275(2)
6.750	1.38a	26.10s	14,452	0.000	6.720	1.6511	1.221(2)
6.603	1.69a	29.01s	14,453	0.000	6.847	1.9971	-0.002(2)
6.552	1.81a	30.03s	14,452	0.000	6.855	2.1183	-0.430(2)
6.509	1.98a	31.10s	14,452	0.000	6.846	2.2464	-0.891(2)
6.389	3.00a	36.10 s	14,452	0.000	6.615	2.8368	-3.113(2)
6.616	5.03a	41.10s	14,453	0.000	6.139	3.3951	-5.579(2)
7.966	10.14a	46.10s	14,452	0.000	5.380	3.8998	-8.767(2)
11.186	20.74a	51.10s	14,453	0.000	4.066	4.3160	-12.956(2)
13.684	30.14a	56.10 s	14,452	0.000	2.679	4.6109	-16.209(2)
14.934	36.16a	61.10 s	14,455	0.000	1.642	4.7968	-18.370(2)

15.496	40.04 a	66.10 s	14,453	0.000	0.880	4.9048	$-19.941(2)$
15.670	42.15 a	70.00 s	14,453	0.000	0.407	4.9481	$-20.933(2)$

Distances in METERS.---Specific Gravity = 1.025.----------Area in m.-Rad.
Note: The Residual Righting Arms shown above are in excess of the wind heeling arms derived from these moments (in m.-MT): Stbd heeling moment $=1251.35$ (constant)
$+$
Note: Angle of MaxRA refers to the absolute Righting Arm curve.
$+$

Critical Points--------------------LCP-----TCP-----VCP					
(2)	c2	FLOOD	$7.000 f$	21.250	19.100
(5)	c5	TIGHT	0.000	16.827	8.235
(6)	c6	TIGHT	$5.673 f$	22.500	8.335

LIM------------------STABILITY CRITERION------------Min/Max--------At
(1) Abs Area from Equ0 (no moments) to MaxRA0 $>0.0800 \mathrm{~m}$. -Rad 2.1624 P
(2) Angle from Equ. to abs 70 deg to 50% Dk Imm. $>\quad 0.00$ deg 68.90 P
(3) Angle from Equilibrium to RAzero or Flood >20.00 deg 27.92 P
(4) Absolute Area from Equ0 (no moments) to Flood > 0.0800 m - -Rad 2.0397 P

RESIDUAL RIGHTING ARMS vs HEEL ANGLE LCG $=22.244 \mathrm{f}$ TCG $=0.262 \mathrm{~s}$ VCG $=9.555$
Inclination axis rotated 15.00 degrees CW
Origin Degrees of Displacement Residual Arms Res. Flood Pt

Depth---Trim----Heel----Weight(MT)---in Trim--in Heel---> Area--Height

| 7.278 | 0.57 a | 1.01 s | 14,452 | 0.000 | -0.087 | 0.0000 | $0.713(5)$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 7.304 | 0.57 a | 1.27 s | 14,452 | 0.000 | -0.003 | -0.0002 | $0.612(5)$ |
| 7.451 | 0.56 a | 2.79 s | 14,452 | 0.000 | 0.479 | 0.0061 | $-0.000(6)$ |
| 7.566 | 0.56 a | 4.01 s | 14,452 | 0.000 | 0.869 | 0.0205 | 50% DeckImm |
| 7.770 | 0.56 a | 6.27 s | 14,452 | 0.000 | 1.596 | 0.0691 | $9.292(2)$ |
| 8.236 | 0.66 a | 11.27 s | 14,452 | 0.000 | 3.171 | 0.2773 | $6.979(2)$ |
| 8.730 | 0.87 a | 16.27 s | 14,452 | 0.000 | 4.636 | 0.6187 | $4.547(2)$ |
| 9.203 | 1.42 a | 21.27 s | 14,454 | 0.000 | 5.806 | 1.0765 | $2.107(2)$ |
| 9.655 | 2.37 a | 25.55 s | 14,452 | 0.000 | 6.340 | 1.5333 | $0.003(2)$ |
| 9.738 | 2.57 a | 26.27 s | 14,452 | 0.000 | 6.386 | 1.6128 | $-0.352(2)$ |
| 10.121 | 3.57 a | 29.48 s | 14,452 | 0.000 | 6.470 | 1.9727 | $-1.954(2)$ |
| 10.351 | 4.21 a | 31.27 s | 14,452 | 0.000 | 6.443 | 2.1746 | $-2.857(2)$ |
| 11.051 | 6.32 a | 36.27 s | 14,452 | 0.000 | 6.155 | 2.7266 | $-5.399(2)$ |
| 11.872 | 9.01 a | 41.27 s | 14,452 | 0.000 | 5.623 | 3.2423 | $-7.965(2)$ |
| 12.810 | 12.29 a | 46.27 s | 14,452 | 0.000 | 4.909 | 3.7031 | $-10.511(2)$ |
| 13.782 | 15.99 a | 51.27 s | 14,452 | 0.000 | 4.072 | 4.0959 | $-12.950(2)$ |
| 14.638 | 19.67 a | 56.27 s | 14,452 | 0.000 | 3.186 | 4.4129 | $-15.181(2)$ |
| 15.273 | 22.93 a | 61.27 s | 14,452 | 0.000 | 2.321 | 4.6531 | $-17.153(2)$ |
| 15.655 | 25.62 a | 66.27 s | 14,452 | 0.000 | 1.512 | 4.8199 | $-18.870(2)$ |
| 15.780 | 27.21 a | 70.00 s | 14,450 | 0.000 | 0.951 | 4.8999 | $-20.003(2)$ |

Distances in METERS.----Specific Gravity = 1.025.----------Area in m.-Rad. $+$
Note: The Residual Righting Arms shown above are in excess of the wind heeling arms derived from these moments (in m.-MT):

Stbd heeling moment $=1251.35$ (constant)
$+$
Note: Angle of MaxRA refers to the absolute Righting Arm curve.
$+$

(2)	c2	FLOOD	$7.000 f$	21.250	19.100
(5)	c5	TIGHT	0.000	16.827	8.235
(6)	c6	TIGHT	$5.673 f$	22.500	8.335

LIM------------------STABILITY CRITERION------------Min/Max--------Attained
(1) Abs Area from Equ0 (no moments) to MaxRA0 $>0.0800 \mathrm{~m} .-\mathrm{Rad} 2.0157 \mathrm{P}$
(2) Angle from Equ. to abs 70 deg to $50 \% \mathrm{Dk}$ Imm. $>\quad 0.00 \mathrm{deg} \quad 68.73 \mathrm{P}$
(3) Angle from Equilibrium to RAzero or Flood >20.00 deg 24.28 P
(4) Absolute Area from Equ0 (no moments) to Flood $>0.0800 \mathrm{~m} .-\mathrm{Rad} 1.5704 \mathrm{P}$

A X I S
30
RESIDUAL RIGHTING ARMS vs HEEL ANGLE
LCG $=22.244 \mathrm{f}$ TCG $=0.262 \mathrm{~s}$ VCG $=9.555$
Inclination axis rotated 30.00 degrees CW

Origin	Degrees of		Displacement	Residual Arms		Res. Flood Pt	
Depth	r	Heel	---Weight (MT)	Tr	n He	Are	Height
7.278	0.29 a	1.12 s	14,452	0.000	-0.087	0.0000	0.713(5)
7.324	0.29a	1.35 s	14,452	0.000	-0.012	-0.0002	0.607(5)
7.331	0.29a	1.39 s	14,452	0.000	0.000	-0.0002	0.590(5)
7.581	0.29a	2.70 s	14,452	0.000	0.415	0.0045	0.001(5)
7.772	0.29a	3.70 s	14,452	0.000	0.736	0.0146	50\% DeckImm
8.262	0.28a	6.35 s	14,452	0.000	1.588	0.0684	9.154(2)
9.190	0.36 a	11.35s	14,452	0.000	3.129	0.2746	6.706(2)
10.108	0.53 a	16.35 s	14,452	0.000	4.535	0.6100	4.177(2)
10.938	0.96 a	21.35 s	14,452	0.000	5.565	1.0534	1.703(2)

11.498	1.46 a	24.83 s	14,452	0.000	5.944	1.4042	$-0.001(2)$
11.740	1.72 a	26.35 s	14,452	0.000	6.033	1.5632	$-0.745(2)$
12.237	2.33 a	29.54 s	14,452	0.000	6.101	1.9007	$-2.298(2)$
12.512	2.71 a	31.35 s	14,452	0.000	6.079	2.0934	$-3.178(2)$
13.242	3.87 a	36.35 s	14,452	0.000	5.845	2.6155	$-5.582(2)$
13.918	5.19 a	41.35 s	14,451	0.000	5.418	3.1083	$-7.937(2)$
14.532	6.63 a	46.35 s	14,451	0.000	4.854	3.5575	$-10.221(2)$
15.066	8.16 a	51.35 s	14,451	0.000	4.193	3.9530	$-12.411(2)$
15.500	9.71 a	56.35 s	14,451	0.000	3.464	4.2875	$-14.483(2)$
15.810	11.19 a	61.35 s	14,451	0.000	2.692	4.5564	$-16.419(2)$
15.974	12.52 a	66.35 s	14,451	0.000	1.899	4.7569	$-18.206(2)$
15.992	13.34 a	70.00 s	14,451	0.000	1.316	4.8592	$-19.412(2)$
Distances in METERS.---Specific Gravity $=1.025 .--------\operatorname{larea}$ in m.-Rad.							

Note: The Residual Righting Arms shown above are in excess of the wind heeling arms derived from these moments (in m.-MT):

Stbd heeling moment $=1251.35$ (constant)
$+$
Note: Angle of MaxRA refers to the absolute Righting Arm curve. $+$

Critical Points--------------------LCP-----TCP-----VCP					
(2)	c2	FLOOD	7.000f	21.250	19.100
(5)		TIGHT	0.000	16.827	8.235

LIM-----------------STABILITY CRITERION-----------Min/Max--------At
(1) Abs Area from Equ0 (no moments) to MaxRA0 $>0.0800 \mathrm{~m}$. -Rad 1.9437 P
(2) Angle from Equ. to abs 70 deg to $50 \% \mathrm{Dk}$ Imm. $>\quad 0.00 \mathrm{deg} \quad 68.61 \mathrm{P}$
(3) Angle from Equilibrium to RAzero or Flood $>20.00 \mathrm{deg} 23.44 \mathrm{P}$
(4) Absolute Area from Equ0 (no moments) to Flood > $0.0800 \mathrm{~m} .-\mathrm{Rad} 1.4401 \mathrm{P}$

Inclination Axis rotated 30.00 degrees CW

A X I S 45
RESIDUAL RIGHTING ARMS vs HEEL ANGLE
LCG $=22.244 \mathrm{f}$ TCG $=0.262 \mathrm{~s}$ VCG $=9.555$
Inclination axis rotated 45.00 degrees CW

Origin	Deg	of	Displacement	Resid	Arms	Res	Flood Pt
Dept		Heel	---Weight (MT)	n Tr	n Hee	> Area	Height
7.278	0.01 s	1.15a	14,452	0.000	-0.087	0.0000	0.713(5)
7.331	0.01 s	1.35a	14,452	0.000	-0.025	-0.0002	0.619(5)
7.353	0.01 s	1.43a	14,452	0.000	0.000	-0.0002	0.581(5)
7.680	0.01 s	2.62a	14,452	0.000	0.380	0.0038	-0.000(5)
7.948	0.01 s	3.62a	14,452	0.000	0.697	0.0131	50\% DeckImm
8.675	0.01 s	6.35a	14,452	0.000	1.574	0.0672	9.189(2)
9.983	0.01 s	11.35a	14,452	0.000	3.103	0.2718	6.757(2)
11.232	0.01 s	16.35a	14,452	0.000	4.484	0.6039	4.256(2)
12.296	0.01s	21.35a	14,452	0.000	5.466	1.0409	1.821(2)

13.008	0.01 s	25.14 a	14,452	0.000	5.843	1.4168	$-0.002(2)$
13.221	0.01 s	26.35 a	14,452	0.000	5.907	1.5407	$-0.581(2)$
13.769	0.01 s	29.66 a	14,452	0.000	5.975	1.8847	$-2.164(2)$
14.028	0.01 s	31.35 a	14,452	0.000	5.957	2.0599	$-2.963(2)$
14.721	0.01 s	36.35 a	14,452	0.000	5.749	2.5724	$-5.314(2)$
15.297	0.02 s	41.35 a	14,452	0.000	5.363	3.0585	$-7.620(2)$
15.753	0.02 s	46.35 a	14,452	0.000	4.849	3.5050	$-9.865(2)$
16.087	0.02 s	51.35 a	14,452	0.000	4.238	3.9022	$-12.032(2)$
16.297	0.02 s	56.35 a	14,452	0.000	3.555	4.2428	$-14.107(2)$
16.382	0.02 s	61.35 a	14,452	0.000	2.815	4.5211	$-16.072(2)$
16.341	0.02 s	66.35 a	14,452	0.000	2.032	4.7329	$-17.915(2)$
16.232	0.02 s	70.00 a	14,452	0.000	1.441	4.8437	$-19.175(2)$
Distances $\mathrm{in} \mathrm{METERS.---Specific} \mathrm{Gravity}=1.025 .--------$ Area $\mathrm{in} \mathrm{m} .-\mathrm{Rad}$.							

Note: The Residual Righting Arms shown above are in excess of the wind heeling arms derived from these moments (in m.-MT):

Aft heeling moment $=1251.35$ (constant)
$+$
Note: Angle of MaxRA refers to the absolute Righting Arm curve. $+$

Critical Points--------------------LCP-----TCP-----VCP					
(2)	c2	FLOOD	7.000f	21.250	19.100
(5)	c5	TIGHT	0.000	16.827	8.235

LIM-----------------STABILITY CRITERION------------Min/Max-------At
(1) Abs Area from Equ0 (no moments) to MaxRA0 $>0.0800 \mathrm{~m}$. -Rad 1.9278 P
(2) Angle from Equ. to abs 70 deg to $50 \% \mathrm{Dk}$ Imm. $>00.00 \mathrm{deg} 68.57 \mathrm{P}$
(3) Angle from Equilibrium to RAzero or Flood $>20.00 \mathrm{deg} 23.71 \mathrm{P}$
(4) Absolute Area from Equ0 (no moments) to Flood > $0.0800 \mathrm{~m} .-\mathrm{Rad} 1.4530 \mathrm{P}$

A X I S 60

RESIDUAL RIGHTING ARMS vs HEEL ANGLE
LCG $=22.244 \mathrm{f}$ TCG $=0.262 \mathrm{~s}$ VCG $=9.555$
Inclination axis rotated 60.00 degrees CW

Origin	Degrees of		Displacement	Residual Arms		Res. Flood Pt	
Depth	Trim-	Heel	-Weight (MT)	in Tr	in He	> Are	-Height
7.278	0.31 s	1.11 a	14,452	0.000	-0.087	0.0000	0.713(5)
7.324	0.31 s	1.25a	14,452	0.000	-0.043	-0.0002	0.647 (5)
7.370	0.31 s	1.38 a	14,452	0.000	0.000	-0.0002	0.580(5)
7.770	0.31 s	2.57 a	14,452	0.000	0.379	0.0037	-0.000(5)
8.145	0.31 s	3.70a	14,452	0.000	0.737	0.0147	50\% DeckImm
8.981	0.31 s	6.25a	14,452	0.000	1.556	0.0656	9.204(1)
10.581	0.38 s	11.25a	14,452	0.000	3.099	0.2691	6.758(1)
12.105	0.55 s	16.25a	14,450	0.000	4.511	0.6021	4.231(1)
13.390	0.98 s	21.25a	14,452	0.000	5.550	1.0438	1.754(1)

14.166	1.49 s	24.83 a	14,452	0.000	5.944	1.4048	$-0.001(1)$
14.446	1.73 s	26.25 a	14,452	0.000	6.029	1.5528	$-0.694(1)$
15.041	2.35 s	29.54 a	14,452	0.000	6.101	1.9016	$-2.300(1)$
15.319	2.71 s	31.25 a	14,452	0.000	6.081	2.0828	$-3.127(1)$
16.018	3.87 s	36.25 a	14,452	0.000	5.852	2.6054	$-5.532(1)$
16.540	5.19 s	41.25 a	14,450	0.000	5.429	3.0990	$-7.887(1)$
16.889	6.64 s	46.25 a	14,454	0.000	4.866	3.5492	$-10.176(1)$
17.058	8.17 s	51.25 a	14,451	0.000	4.206	3.9457	$-12.366(1)$
17.066	9.72 s	56.25 a	14,451	0.000	3.478	4.2815	$-14.441(1)$
16.929	11.20 s	61.25 a	14,451	0.000	2.708	4.5518	$-16.380(1)$
16.674	12.53 s	66.25 a	14,451	0.000	1.915	4.7536	$-18.169(1)$
16.421	13.38 s	70.00 a	14,452	0.000	1.315	4.8594	$-19.412(1)$
Distances in METERS.---Specific Gravity $=1.025 .-------$ - Area in m.-Rad.							

Note: The Residual Righting Arms shown above are in excess of the wind heeling arms derived from these moments (in m.-MT):

Aft heeling moment $=1251.35$ (constant)
$+$
Note: Angle of MaxRA refers to the absolute Righting Arm curve. $+$

Critical Points--------------------LCP-----TCP----VCP					
(1)	c1	FLOOD	1.250 f	15.500	19.100
(5)	c5	TIGHT	0.000	16.827	8.235

LIM------------------STABILITY CRITERION-----------Min/Max--------At
(1) Abs Area from Equ0 (no moments) to MaxRA0 $>0.0800 \mathrm{~m} .-\mathrm{Rad} 1.9445 \mathrm{P}$
(2) Angle from Equ. to abs 70 deg to $50 \% \mathrm{Dk}$ Imm. $>\quad 0.00 \mathrm{deg} 68.62 \mathrm{P}$
(3) Angle from Equilibrium to RAzero or Flood $>20.00 \mathrm{deg} 23.45 \mathrm{P}$
(4) Absolute Area from Equ0 (no moments) to Flood > $0.0800 \mathrm{~m} .-\mathrm{Rad} 1.4406 \mathrm{P}$

A X I S 75

> RESIDUAL RIGHTING ARMS vs HEEL ANGLE
> LCG $=22.244 \mathrm{f}$ TCG $=0.262 \mathrm{~s}$ VCG $=9.555$ Inclination axis rotated 75.00 degrees CW

Origin	Degrees of		Displacement	Residual Arms		Res. Flood Pt	
Depth	rim-	Heel	--Weight (MT)	Tr	in H	-> Area	-Height
7.278	0.59 s	0.99 a	14,452	0.000	-0.087	0.0000	0.713(5)
7.305	0.59 s	1.06 a	14,452	0.000	-0.064	-0.0001	0.681(5)
7.381	0.59 s	1.27 a	14,452	0.000	0.000	-0.0002	0.589(5)
7.866	0.59 s	2.56a	14,452	0.000	0.411	0.0044	-0.000(5)
8.402	0.59 s	4.00a	14,452	0.000	0.871	0.0206	50\% DeckImm
9.159	0.59 s	6.06a	14,452	0.000	1.533	0.0638	9.380(1)
10.952	0.67 s	11.06a	14,452	0.000	3.114	0.2667	7.074(1)
12.697	0.88 s	16.06a	14,452	0.000	4.583	0.6033	4.644(1)
14.231	1.41 s	21.06a	14,452	0.000	5.771	1.0571	2.205(1)

15.368	2.39 s	25.55 a	14,452	0.000	6.342	1.5342	$0.003(1)$
15.486	2.54 s	26.06 a	14,452	0.000	6.376	1.5914	$-0.254(1)$
16.212	3.59 s	29.45 a	14,452	0.000	6.471	1.9725	$-1.947(1)$
16.523	4.16 s	31.06 a	14,452	0.000	6.449	2.1543	$-2.758(1)$
17.339	6.26 s	36.06 a	14,452	0.000	6.172	2.7050	$-5.299(1)$
17.898	8.93 s	41.06 a	14,450	0.000	5.649	3.2225	$-7.864(1)$
18.162	12.20 s	46.06 a	14,452	0.000	4.940	3.6859	$-10.414(1)$
18.121	15.88 s	51.06 a	14,452	0.000	4.106	4.0815	$-12.858(1)$
17.830	19.57 s	56.06 a	14,452	0.000	3.220	4.4015	$-15.098(1)$
17.393	22.86 s	61.06 a	14,452	0.000	2.353	4.6445	$-17.080(1)$
16.882	25.57 s	66.06 a	14,452	0.000	1.542	4.8140	$-18.805(1)$
16.463	27.26 s	70.00 a	14,451	0.000	0.950	4.8994	$-20.003(1)$
Distances in METERS.---Specific Gravity $=1.025 .-------$ - Area in m.-Rad.							

Note: The Residual Righting Arms shown above are in excess of the wind heeling arms derived from these moments (in m.-MT):

Aft heeling moment $=1251.35$ (constant)
$+$
Note: Angle of MaxRA refers to the absolute Righting Arm curve. $+$

Critical Points--------------------LCP-----TCP-----VCP					
(1)	c1	FLOOD	1.250f	15.500	19.100
(5)		TIGHT	0.000	16.827	8.235

LIM-----------------STABILITY CRITERION------------Min/Max-------At
(1) Abs Area from Equ0 (no moments) to MaxRA0 $>0.0800 \mathrm{~m}$. -Rad 2.0155 P
(2) Angle from Equ. to abs 70 deg to $50 \% \mathrm{Dk}$ Imm. $>\quad 0.00 \mathrm{deg} 68.73 \mathrm{P}$
(3) Angle from Equilibrium to RAzero or Flood >20.00 deg 24.28 P
(4) Absolute Area from Equ0 (no moments) to Flood $>0.0800 \mathrm{~m} .-\mathrm{Rad} 1.5713 \mathrm{P}$

Inclination Axis rotated 75.00 degrees $C W$

A X I S 90
RESIDUAL RIGHTING ARMS vs HEEL ANGLE
LCG $=22.244 \mathrm{f}$ TCG $=0.262 \mathrm{~s}$ VCG $=9.555$
Inclination axis rotated 90.00 degrees CW

Origin Depth	Degrees of		acement	Residual Arms		Res. Flood Pt	
	rim	Heel	ht (MT	n Tr	n Hee	> Area	-Height
7.278	0.82 s	0.81 a	14,452	0.000	-0.087	0.0000	0.713(5)
7.384	0.82 s	1.08a	14,450	0.000	0.000	-0.0002	0.607(5)
7.984	0.82 s	2.62a	14,452	0.000	0.490	0.0064	-0.001(5)
8.776	0.82 s	4.68a	14,453	0.000	1.148	0.0358	50\% DeckImm
9.203	0.82 s	5.81a	14,453	0.000	1.509	0.0619	9.701(1)
11.063	0.85 s	10.81a	14,453	0.000	3.132	0.2642	7.701(1)
12.914	0.91 s	15.81a	14,452	0.000	4.596	0.6026	5.556(1)
14.619	1.06s	20.81a	14,454	0.000	5.944	1.0633	3.390(1)

16.026	1.38 s	25.81 a	14,452	0.000	6.701	1.6193	$1.336(1)$
16.842	1.71 s	28.99 a	14,454	0.000	6.850	1.9975	$0.001(1)$
17.086	1.85 s	30.01 a	14,450	0.000	6.859	2.1185	$-0.431(1)$
17.280	1.95 s	30.81 a	14,453	0.000	6.853	2.2143	$-0.773(1)$
18.389	2.96 s	35.81 a	14,452	0.000	6.638	2.8061	$-2.990(1)$
19.325	4.92 s	40.81 a	14,451	0.000	6.175	3.3670	$-5.438(1)$
19.938	9.80 s	45.81 a	14,451	0.000	5.435	3.8756	$-8.575(1)$
19.627	20.22 s	50.81 a	14,452	0.000	4.145	4.2976	$-12.749(1)$
18.584	29.78 s	55.81 a	14,452	0.000	2.744	4.5991	$-16.068(1)$
17.595	35.94 s	60.81 a	14,450	0.000	1.690	4.7900	$-18.265(1)$
16.798	39.91 s	65.81 a	14,453	0.000	0.916	4.9017	$-19.863(1)$
16.228	42.20 s	70.00 a	14,450	0.000	0.405	4.9493	$-20.931(1)$
Distances in METERS.---Specific Gravity $=1.025 .-------$ Area in m.-Rad.							

Note: The Residual Righting Arms shown above are in excess of the wind heeling arms derived from these moments (in m.-MT):

Aft heeling moment $=1251.35$ (constant)
$+$
Note: Angle of MaxRA refers to the absolute Righting Arm curve. $+$

Critical Points--------------------LCP-----TCP-----VCP					
(1)	c1	FLOOD	1.250f	15.500	19.100
(5)		TIGHT	0.000	16.827	8.235

LIM-----------------STABILITY CRITERION-----------Min/Max--------At
(1) Abs Area from Equ0 (no moments) to MaxRA0 $>0.0800 \mathrm{~m}$. -Rad 2.1626 P
(2) Angle from Equ. to abs 70 deg to $50 \% \mathrm{Dk}$ Imm. $>\quad 0.00 \mathrm{deg} 68.92 \mathrm{P}$
(3) Angle from Equilibrium to RAzero or Flood $>20.00 \mathrm{deg} 27.92 \mathrm{P}$
(4) Absolute Area from Equ0 (no moments) to Flood > $0.0800 \mathrm{~m} .-\mathrm{Rad} 2.0401 \mathrm{P}$

A X I S 105
RESIDUAL RIGHTING ARMS vs HEEL ANGLE LCG $=22.244 \mathrm{f}$ TCG $=0.262 \mathrm{~s}$ VCG $=9.555$ Inclination axis rotated 105.00 degrees CW

Origin	Degrees of		Displacement	Residual Arms		Res. Flood Pt	
Depth	rim	ee	--Weight (MT)	in Tr	n H	Are	-Height
7.251	1.01 s	0.49 a	14,452	0.000	-0.109	0.0000	11.623(2)
7.278	1.01 s	0.57 a	14,452	0.000	-0.087	-0.0001	0.713 (5)
7.381	1.01 s	0.84 a	14,452	0.000	0.000	-0.0003	0.630(5)
8.158	1.00 s	2.91a	14,452	0.000	0.658	0.0116	0.001(5)
8.730	1.00 s	4.45a	14,452	0.000	1.151	0.0359	50\% DeckImm
9.112	1.00 s	5.49a	14,452	0.000	1.485	0.0599	9.896(1)
10.908	0.97 s	10.49a	14,452	0.000	3.098	0.2597	7.618(1)
12.683	0.87 s	15.49a	14,452	0.000	4.566	0.5952	5.204(1)

14.287	0.57 s	20.49a	14,452	0.000	5.851	1.0510	2.774(1)
15.608	0.14 p	25.49a	14,454	0.000	6.573	1.5972	0.388(1)
15.800	0.29p	26.30a	14,452	0.000	6.631	1.6904	0.002(1)
16.592	1.01p	29.83a	14,452	0.000	6.732	2.1026	-1.689(1)
16.733	1.17p	30.49a	14,452	0.000	6.728	2.1812	-2.012(1)
17.682	2.50p	35.49a	14,451	0.000	6.522	2.7625	-4.441(1)
18.424	4.32p	40.49a	14,452	0.000	6.074	3.3138	-6.909(1)
18.895	$6.91 p$	45.49a	14,450	0.000	5.442	3.8177	-9.429(1)
19.032	10.41p	50.49a	14,452	0.000	4.650	4.2592	-11.972(1)
18.808	14.54p	55.49a	14,450	0.000	3.743	4.6262	-14.413(1)
18.339	18.58p	60.49a	14,452	0.000	2.802	4.9121	-16.609(1)
17.765	21.95p	65.49a	14,452	0.000	1.904	5.1171	-18.501(1)
17.236	24.28p	70.00a	14,452	0.000	1.154	5.2369	-19.973(1)
Distances in METERS.----Specific Gravity = 1.025.----------Area in m.-Rad							

Note: The Residual Righting Arms shown above are in excess of the wind heeling arms derived from these moments (in m.-MT):

Aft heeling moment $=1251.35$ (constant)
$+$
Note: Angle of MaxRA refers to the absolute Righting Arm curve. $+$

(1)	c1	FLOOD	$1.250 f$	15.500	19.100
(2)	c2	FLOOD	$7.000 f$	21.250	19.100
(5)	c5	TIGHT	0.000	16.827	8.235

LIM----------------STABILITY CRITERION-----------Min/Max--------At
(1) Abs Area from Equ0 (no moments) to MaxRA0 $>0.0800 \mathrm{~m}$. -Rad 2.1469 P
(2) Angle from Equ. to abs 70 deg to $50 \% \mathrm{Dk}$ Imm. $>00.00 \mathrm{deg} \quad 69.16 \mathrm{P}$
(3) Angle from Equilibrium to RAzero or Flood $>20.00 \mathrm{deg} 25.46 \mathrm{P}$
(4) Absolute Area from Equ0 (no moments) to Flood $>0.0800 \mathrm{~m}$. -Rad 1.7294 P

A X I S 120

RESIDUAL RIGHTING ARMS vs HEEL ANGLE
LCG $=22.244 \mathrm{f}$ TCG $=0.262 \mathrm{~s} \quad$ VCG $=9.555$
Inclination axis rotated 120.00 degrees CW

Origin	Degrees of		Displacement	Residual Arms		Res. Flood Pt	
Depth	rim	Heel	-Weight (MT)	n Tr	in Hee	> Are	-Height
7.232	1.12 s	0.15 a	14,452	0.000	-0.130	0.0000	11.618(2)
7.278	1.12 s	0.29a	14,452	0.000	-0.087	-0.0003	0.713(5)
7.370	1.12 s	0.56a	14,452	0.000	0.000	-0.0005	0.660(5)
8.105	1.12 s	2.74 a	14,452	0.000	0.694	0.0128	-0.000(5)
8.486	1.12 s	3.89a	14,452	0.000	1.059	0.0303	50\% DeckImm
8.901	1.12 s	5.15a	14,452	0.000	1.462	0.0580	9.794(1)
10.509	1.08 s	10.15a	14,452	0.000	3.045	0.2547	7.378(1)
12.073	0.96 s	15.15a	14,452	0.000	4.493	0.5846	4.854(1)

13.435	0.66 s	20.15 a	14,452	0.000	5.657	1.0296	$2.361(1)$
14.525	0.11 s	24.98 a	14,452	0.000	6.261	1.5355	$-0.000(1)$
14.561	0.09 s	25.15 a	14,452	0.000	6.273	1.5541	$-0.084(1)$
15.397	0.59 p	29.52 a	14,452	0.000	6.413	2.0398	$-2.207(1)$
15.509	0.70 p	30.15 a	14,452	0.000	6.410	2.1108	$-2.514(1)$
16.292	1.64 p	35.15 a	14,452	0.000	6.234	2.6652	$-4.920(1)$
16.910	2.73 p	40.15 a	14,454	0.000	5.845	3.1938	$-7.290(1)$
17.350	3.96 p	45.15 a	14,451	0.000	5.305	3.6813	$-9.597(1)$
17.614	5.32 p	50.15 a	14,451	0.000	4.652	4.1166	$-11.826(1)$
17.702	6.77 p	55.15 a	14,451	0.000	3.917	4.4911	$-13.953(1)$
17.629	$8.23 p$	60.15 a	14,451	0.000	3.126	4.7989	$-15.955(1)$
17.418	9.61 p	65.15 a	14,451	0.000	2.301	5.0359	$-17.813(1)$
17.110	$10.76 p$	70.00 a	14,451	0.000	1.484	5.1963	$-19.469(1)$
Distances in METERS.---Specific Gravity $=1.025 .-------$ Area in m.-Rad.							

Note: The Residual Righting Arms shown above are in excess of the wind heeling arms derived from these moments (in m.-MT):

Aft heeling moment $=1251.35$ (constant)
$+$
Note: Angle of MaxRA refers to the absolute Righting Arm curve. $+$

(1)	c1	FLOOD	$1.250 f$	15.500	19.100
(2)	c2	FLOOD	$7.000 f$	21.250	19.100
(5)	c5	TIGHT	0.000	16.827	8.235

LIM-----------------STABILITY CRITERION------------Min/Max--------At
(1) Abs Area from Equ0 (no moments) to MaxRA0 $>0.0800 \mathrm{~m}$. -Rad 2.0843 P
(2) Angle from Equ. to abs 70 deg to $50 \% \mathrm{Dk}$ Imm. > 0.00 deg 69.44 P
(3) Angle from Equilibrium to RAzero or Flood >20.00 deg 24.42 P
(4) Absolute Area from Equ0 (no moments) to Flood $>0.0800 \mathrm{~m} .-\mathrm{Rad} 1.5730 \mathrm{P}$

A X I S
135
RESIDUAL RIGHTING ARMS vs HEEL ANGLE
LCG $=22.244 \mathrm{f}$ TCG $=0.262 \mathrm{~s}$ VCG $=9.555$
Inclination axis rotated 135.00 degrees CW

Origin	Deg	of	Displacement	Resid	Arms	Res	Flood Pt
Depth	Trim	Heel	---Weight (MT)	Tr	in He	Are	Height
7.224	1.15 s	$0.21 f$	14,452	0.000	-0.148	0.0000	0.727(5)
7.278	1.15 s	0.01 f	14,452	0.000	-0.087	-0.0004	0.713(5)
7.354	1.15 s	0.26 a	14,452	0.000	0.000	-0.0006	0.694(5)
7.956	1.15 s	2.45 a	14,452	0.000	0.696	0.0127	-0.000(5)
8.271	1.15 s	3.62a	14,452	0.000	1.066	0.0306	50\% DeckImm
8.586	1.15 s	4.79 a	14,452	0.000	1.443	0.0564	9.839(1)
9.898	1.15 s	9.79a	14,452	0.000	3.014	0.2510	7.444(1)
11.185	1.16 s	14.79a	14,452	0.000	4.444	0.5774	4.946(1)

12.315	1.19 s	19.79 a	14,452	0.000	5.567	1.0164	$2.487(1)$
13.292	1.25 s	24.79 a	14,452	0.000	6.153	1.5317	$0.076(1)$
13.322	1.25 s	24.95 a	14,452	0.000	6.164	1.5488	$-0.000(1)$
14.079	1.32 s	29.31 a	14,452	0.000	6.293	2.0242	$-2.085(1)$
14.159	1.33 s	29.79 a	14,452	0.000	6.292	2.0778	$-2.318(1)$
14.917	1.44 s	34.79 a	14,452	0.000	6.135	2.6225	$-4.687(1)$
15.563	1.57 s	39.79 a	14,452	0.000	5.778	3.1438	$-7.016(1)$
16.093	1.71 s	44.79 a	14,452	0.000	5.277	3.6272	$-9.289(1)$
16.503	1.85 s	49.79 a	14,452	0.000	4.670	4.0620	$-11.489(1)$
16.788	1.99 s	54.79 a	14,452	0.000	3.982	4.4402	$-13.601(1)$
16.945	2.12 s	59.79 a	14,452	0.000	3.231	4.7554	$-15.607(1)$
16.973	2.23 s	64.79 a	14,451	0.000	2.433	5.0029	$-17.493(1)$
16.874	2.35 s	69.79 a	14,452	0.000	1.599	5.1790	$-19.246(1)$
16.869	2.36 s	70.00 a	14,452	0.000	1.564	5.1847	$-19.315(1)$
Distances in METERS.---Specific Gravity $=1.025 .--------\operatorname{Area}$ in $\mathrm{m} .-\mathrm{Rad}$.							

Note: The Residual Righting Arms shown above are in excess of the wind heeling arms derived from these moments (in m.-MT):

Aft heeling moment $=1251.35$ (constant)
$+$
Note: Angle of MaxRA refers to the absolute Righting Arm curve. $+$

Critical Points--------------------LCP-----TCP-----VCP					
(1)	c1	FLOOD	1.250 f	15.500	19.100
(5)	c5	TIGHT	0.000	16.827	8.235

LIM-----------------STABILITY CRITERION------------Min/Max--------At
(1) Abs Area from Equ0 (no moments) to MaxRA0 $>0.0800 \mathrm{~m}$. -Rad 2.0689 P
(2) Angle from Equ. to abs 70 deg to $50 \% \mathrm{Dk}$ Imm. > 0.00 deg 69.74 P
(3) Angle from Equilibrium to RAzero or Flood >20.00 deg 24.69 P
(4) Absolute Area from Equ0 (no moments) to Flood > $0.0800 \mathrm{~m} .-\mathrm{Rad} 1.5869 \mathrm{P}$

[^0]: - Space between the block is increased to have better conditions. - day light etc.

